Linux Kernel Runtime Guard (LKRG) 1.0

A talk by

Solar Designer <solar@openwall.com>
@solardiz

Openwall / @Openwall / https://www.openwall.com
CIQ / @CtrlIQ / https://ciq.com

Credits: Adam 'pi3' Zabrocki et al., Openwall, Binarly, CIQ/Rocky Linux

September 5, 2025
Berlin, Germany

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 1/ 26



Linux Kernel Runtime Guard (LKRG) 1.0

What 1s LKRG

Project of Adam 'pi3' Zabrocki
+ Brought under Openwall umbrella for its first public release in 2018

+ (Post-)detection of (and response to) kernel rootkits and exploits

Linux kernel module that performs
+ Runtime integrity checking of the kernel and modules (including 1itself) <-

+ and of CPU flags and globals and the kernel's view of running processes &
+ Sanity-checking of control flow (stack unwinding) and blocking some APIs
+ Response to (almost-)successful attacks and encrypted remote logging

20+ contributors total, 4 very active this release cycle (0.9.9 to 1.0.0)
+ Also users contribute testing beyond what we could perform ourselves

Independent project with some corporate support
+ Remote logging research and initial implementation in 2022 by Binarly
+ Many general improvements, releases, packaging in 2023-2025 by CIQ

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025

"code"
Ildatall

2 / 26



i et k. o

Linux Kernel Runtime Guard (LKRG) 1.0

Openwall's most controversial project ever?

Can't win against attack from same privilege level, they say?

But what if you counter-attack?
Compared to exploit or Core War, our goal is modest: detect and stop attack

OTOH, exploits may know exactly what we do before we do it, so we randomize

Core War 1is a programming game 1introduced 1n 1984 by D. G. Jones and A. K. Dewdney.
In the game, two or more battle programs, known as warriors, compete for control of a
virtual computer. These programs are written in an abstract assembly language

Wikipedia

Players write programs to eliminate all opponents in the memory [...]
Core War News - 2025

16 Jun
Congratulations to Inversed and Dave Hillis, who claimed first and second place 1in

the Nano Core War Challenge
Core War website

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 3/ 26



Linux Kernel Runtime Guard (LKRG) 1.0

The landscape

* Kernel hardening patches
+ Early one-security-feature patches in mid-1990s, then compilations of those

+ Openwall's -ow patches for Linux 2.0.x since 1997 to 2.4.x maintained until 2010

+ grsecurity + PaX since 2001, by Brad Spengler (spender) and PaX Team (pipacs)
+ At first protecting the userland by the kernel, later also kernel self-protection

* Upstreaming efforts
+ Openwall's GSoC 2011 project with Vasiliy Kulikov, kernel-hardening mailing Llist

+ Kernel Self-Protection Project (KSPP) by Kees Cook et al. since 2015

* Tetragon eBPF-based Security Observability and Runtime Enforcement by Cilium, 2022+
+ Functionality and approach partially overlaps with LKRG, but implemented via eBPF

* LKRG 1s mostly orthogonal to and may co-exist with kernel hardening patches/changes
+ Some LKRG users are running it with hardened kernels (forks of old grsecurity)
+ LKRG may probably co-exist with and protect Tetragon, but this is trickier

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 4 / 26



Linux Kernel Runtime Guard (LKRG) 1.0

Runtime 1integrity checking

This involves several activities

When LKRG 1is loaded:

*

*

Generate a random key for SipHash
Snapshot the initial state

+ Keyed hashes of CPU metadata, kernel image, and modules as they're seen in memory

+ Values of critical global variables such as SELinux "enabled" and "enforcing"
+ Shadow database of running tasks (processes and threads), including credentials

While LKRG runs:

*

Track legitimate changes and update the snapshot (avoiding race conditions)

+ Hook kernel functions that make such changes, pause checking, update on success
Validate current state against the snapshot (also avoiding race conditions)

+ At intervals, on random events, and most 1importantly just before it would matter
On unexpected differences, log the event and trigger the configured response

+ log and accept or log only or kill task or panic the kernel (defaults vary)

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025

5 / 26



Linux Kernel Runtime Guard (LKRG) 1.0

System (kernel) 1integrity checking (kINT)

This includes:
* CPU metadata: CPUs online, per-CPU WP SMEP SMAP, IDT, MSRs (e.g., syscall address)

*x Kernel image in memory, modules loaded, module images in memory

* Some of these things are also checked more frequently (current CPU's flags)
* Some also have separate configuration knobs (SMEP, SMAP, MSRs)
+ For custom configuration, but normally these are updated as part of a profile

Legitimate updates include:

* Logical CPUs going offline and back online

* Kernel modules getting (un)loaded by legitimate root (task passes integrity check)
* Kernel or modules getting patched at runtime to optimize (not so) static branches

Questionable updates include:
* Hooking of kernel functions such as for profiling by legitimate root
+ We currently allow only ftrace (including k[ret]probes optimized to ftrace)

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 6 / 26



Linux Kernel Runtime Guard (LKRG) 1.0

Task (process) integrity checking (pINT)

This includes, for each task (process or thread):

*

*

Objective credentials (real_cred)

+ Pointer

+ Real, saved, effective, and filesystem UIDs/GIDs
+ User namespace (container)

seccomp

+ Mode

+ First filter pointer

Legitimate updates include (if existing task and/or control flow passes check):

> X * X X X

New task wake-up (start tracking 1it)

Task exiting (stop tracking it, know 1its task_struct address and PID may be reused)
SUID/SGID execve()

set*xid()
prctl() PR_SET_SECCOMP
Some filesystems (NFS, OverlayFS) temporarily overriding subjective credentials

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 7/ 26



Linux Kernel Runtime Guard (LKRG) 1.0
Task (process) and control flow integrity checking (pINT and pCFI)

* When a task is about to be updated or when 1its credentials are about to be used
+ such as to open a file

+ Check that it (or the updating task) passes integrity check so far
+ Check that control flow up to this point looks sane

* Poor man's control flow integrity checking (pCFI)
+ Aimed to detect and stop i1nvocation of certain kernel functions from ROP chains
+ We check stack frames to ensure the call chain corresponds to kernel addresses

+ We also do this in a few extra hooks that exist solely to perform this check
+ because those kernel functions were too useful in exploits, such as inode access

+ ROP skipping the hooked function's prologue (and entry hook) is a concern

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 8 / 26



Linux Kernel Runtime Guard (LKRG) 1.0
Shadow task database
* We maintain our own database with our copies of critical data for each task we track

* The data structure(s) and locking conventions affect performance and scalability greatly

LKRG 0.0 (2018) to 0.7 (2000)
One RB tree guarded by one spinlock
original design by Adam

LKRG 0.8 (2000) to 0.9.9 (2024)

512-entry hash table of RB trees guarded by their corresponding 512 read-write locks
by Solar and Adam

LKRG 1.0.0 (2025)

512-entry hash table of RB trees guarded by RCU, lockless lookup (on Linux 4.2+)
by Sultan Alsawaf (CIQ)

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 9 / 26



Linux Kernel Runtime Guard (LKRG) 1.0

usermodehelper blocking

The kernel sometimes invokes userland programs on 1its own

+ Such as modprobe to load a kernel module on demand to expose some kernel CVE
+ or systemd-coredump to leak /etc/shadow via CVE-2025-4598

On a more serious note, this functionality is 1n heavy use by existing distros
+ So blocking it completely is likely to break things (the system may fail to boot)

However, usermodehelper 1s also used as a last step by many kernel exploits
+ Such as overwriting the string corresponding to the kernel.core_pattern sysctl

+ including for container escape
We enforce a read-only allow list of known valid program pathnames by default

+ but also support complete blocking of usermodehelper as part of paranoid profile
+ which works OK if enabled on an already booted up system

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 10 / 26



Linux Kernel Runtime Guard (LKRG) 1.0

Configuration and self-protection

Most LKRG configuration settings exist as both module parameters and sysctl
+ As an exception, remote logging currently only has module parameters

For most features, we have pairs of *_validate and *_enforce settings
+ which control attack detection and response, respectively

For simpler configuration, we also have profile_validate and profile_enforce
+ which adjust many other settings i1n those two categories to match a profile

This runtime configuration, and other critical data, is kept on a read-only page
+ which is only set read-write temporarily when sysctl is used by legitimate root

One of the sysctl's is named hide, which makes LKRG hide 1itself and its symbols

LKRG frequently tests that a kretprobe hook works (detects disabling of kprobes)

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025

I / 26



Linux Kernel Runtime Guard (LKRG) 1.0
Why remote logging
Troubleshooting and post-mortem analyses of (non-)security incidents
+ System's local logs might be unavailable, incomplete, or tampered with
+ There's commonly no way to know the local logs are complete and intact
Centralized processing for SIEM, EDR,

Compliance

Pre-existing remote logging solutions for Linux

+ Userspace: syslogd protocol, CORE-SDI's, rsyslog RELP, NXLog, systemd
+ Kernel: netconsole

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025

12 / 26



Linux Kernel Runtime Guard (LKRG) 1.0
Linux kernel netconsole
x A standard feature of the Linux kernel

* Can be built into the kernel image, but distros usually build as a module

* Sends kernel messages via syslog protocol over UDP
+ Unreliable and insecure transport - but simple and thus reliable setup

* Specialized and low-level enough that 1t:
+ Starts network logging early and doesn't fail even on a kernel panic

+ Requires Ethernet and manual specification of the target MAC address

* Intended to work over local Ethernet only, but also works over the Internet
+ Just specify the gateway's MAC address along with the target's IP address

* OK for one-off debug jobs, unreasonable and tough to use long-term at scale

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 13 / 26



Linux Kernel Runtime Guard (LKRG) 1.0
Remote logging - initial design decisions

Use libhydrogen to implement Noise protocol by Trevor Perrin et al., pattern '"N"
+ Tiny embeddable library by Frank Denis of Llibsodium fame

+ Primitives designed by Dan Bernstein (DJB) et al.: X25519 ECDH, Gimli cipher

+ Noise (but with two-way patterns) 1is notably used in WireGuard and WhatsApp

Use TCP (with UDP an option for later) and plaintext Noise message length headers

Register a custom console
+ but don't send right from there to avoid deadlock and priority inversion 1issues

+ instead, merely queue a "work" to run from a pre-existing kworker thread
Also, queue this "work" when LKRG knows 1it's just logged a message (redundant)

In the queued "work'":
+ Read from the kernel message buffer via the high-level almost-userspace API
+ Encrypt and send (if necessary, also [re]connect, resend what failed before)

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 14 / 26



Linux Kernel Runtime Guard (LKRG) 1.0
Remote logging - initial implementation

* Released in LKRG 0.9.8 on February 28, 2024 just in time for a talk on the topic
+ Along with builds for Rocky Enterprise Linux 8.9 and 9.3 via SIG/Security

* Logs not only messages generated by LKRG, but also all other kernel messages
* The sending component is 1n the LKRG kernel module 1itself

* Communication 1s over a TCP socket opened write-only
+ Limits LKRG's remote attack surface - great

* Write-only 1is possible due to use of the "N" pattern
+ Precludes implementation of forward secrecy - not great

* The receiving and logging counterpart is in a userspace daemon, lkrg-logger
* There are also additional userspace utilities, lkrg-keygen and 1lkrg-logctl

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 15 / 26



Linux Kernel Runtime Guard (LKRG) 1.0

Rootkit detection effectiveness

Master's Thesis of Juho Junnila, entitled "Effectiveness of Linux Rootkit Detection Tools",
shows LKRG as the most effective kernel rootkit detector (of those tested):

* When LKRG is loaded before the rootkit, it detected 8 out of 9 kernel rootkits tested:
+ Diamorphine, Honey Pot Bears, LilyOfTheValley, Nuk3 GhOst, Puszek, Reptile,
Rootfoo Linux Rootkit, Sutekh
* There were no false positives

* The one undetected "rootkit" was actually a keylogger-only module, not a full rootkit

* No other tested rootkit detector was anywhere close to LKRG's effectiveness at this
+ AIDE, OSSEC, and Rootkit Hunter detected 2 out of 9 each, and Chkrootkit detected none

* However, those other tools detected some userspace rootkits, which LKRG doesn't try to
* AIDE plus LKRG 1is shown to be most effective, detecting 14 out of 15 rootkits total

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 6 / 26



Linux Kernel Runtime Guard (LKRG) 1.0
Exploit detection, prevention, and bypasses

There are few exploits we or the user community got working and tested directly

+ but of those we/they did, LKRG tends to detect and stop exploits in time

+ albeit sometimes close to the last step, e.g. one for CVE-2024-1086 at usermodehelper
+ Exceptions are exploits that target the userland, such as for DirtyCOW and DirtyPipe

The bypasses we are aware of were implemented as PoC on top of pre-existing exploits
+ implying that those exploits were originally stopped by LKRG

A series of bypasses by Ilya Matveychikov in 2018-2019, which we were responding to
+ on top of Andrey Konovalov's exploit for CVE-2017-1000112

A bypass by Alexander Popov in 2021 on top of his own exploit for CVE-2021-26708
+ Finds and patches LKRG

A common theme is that LKRG could do better by hiding its and the kernel's specifics
+ Our existing non-default hide sysctl actually breaks Alexander's bypass

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 7 / 28



Linux Kernel Runtime Guard (LKRG) 1.0

Portability and maintenance challenge

* We support a wide range of kernel versions/branches spanning more than a decade
+ LKRG 1.0.0 has been tested with kernels from RHEL/CentOS 7's 3.10.0-1160 to 6.17-rc4
* We support 4 CPU architectures: x86-64, 32-bit x86, AArch64 (ARM64), and 32-bit ARM

* The extent to which LKRG integrates into the kernel may exceed that of a rootkit

* We hook many kernel functions, including some non-exported ones
+ Function inlining and duplication for specialization by compiler are concerns

* We look up addresses of some non-exported kernel symbols

* With some of the addresses, we call into non-exported kernel functions
+ Control flow integrity enforcement by the CPU or compiler 1is a concern

* Yet we manage

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 18 / 26



Linux Kernel Runtime Guard (LKRG) 1.0

Intel CET IBT and KCFI (clang CFI) bypass

New in 1.0:

*) Support (or rather be compatible with the kernel's use of) Intel CET IBT

VN T S I

(CONFIG_X86_KERNEL_IBT) and/or KCFI (CONFIG_CFI_CLANG) for now on x86_64

When Intel CET IBT 1is 1in use, we can't call non-exported kernel functions
indirectly via pointers because there's generally no ENDBR64 instruction
at their start. However, when CET SS 1s not 1n use, like it currently 1s
not by the kernel, we can bypass IBT by using RET as our indirect branch

instruction (RET is exempt from IBT and is assumed to be protected by SS).

We cannot use the NOTRACK prefix for this purpose because the kernel does

not enable 1its support in the CPU, but this wouldn't make much difference.

We use macros to generate wrapper functions for making CET IBT compatible
indirect calls via PUSH/RET, one wrapper function per function pointer.

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025

19 / 26



Linux Kernel Runtime Guard (LKRG) 1.0
Typical bugs/issues so far

Typical issues are mismatch in assumptions between kernel and LKRG, often races
+ e.g., we overlooked the introduction of SECCOMP_MODE_DEAD, now fixed in 1.0

Typical impact is false positives
+ e.g., when a task was dying but not yet dead, we'd see SECCOMP_MODE_DEAD as '"corruption"

The worst near-miss (or near-hit?) was an ABI mismatch (we set a wrong register)
+ User-triggerable Oops (read via a near-NULL pointer), exposed/found/fixed in 2020

Most input would be trusted under a non-compromised kernel
+ but under our threat model we treat it as partially untrusted to add defenses

+ Even 1f we fail to process such input safely, we don't make things worse than before

Some input is actually untrusted even under a non-compromised kernel
+ We don't process it a lot, but we recognize that there's risk of vulnerabilities

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 20 / 26



Linux Kernel Runtime Guard (LKRG) 1.0

Continuous Integration
Currently have 24 CI jobs setup in GitHub Actions, mostly by Vitaly Chikunov
11 build+boot tests (we run QEMU, covering the 4 supported architectures)
+ Ubuntu from 18.04 to 25.10

+ Kernels up to Fedora's builds of latest unreleased mainline

11 build-only tests (some are cross-builds)
+ Includes CentOS 7 (boot testing on this 1is currently manual)

2 source code quality checks
Every commit and pull request is tested, also works in personal forks of the repo

This has helped A LOT, but there's room for improvement

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 24 / B8



Linux Kernel Runtime Guard (LKRG) 1.0

Adoption in distros and products

* LKRG packages exist 1in:

+ ALT Linux, Arch Linux, Astra Linux, Gentoo, Guix, Nix0S, Rocky Linux, Whonix, and Yocto

* Many of these are maintained, a few are not (are of older versions)

* With support by CIQ, we maintain LKRG in the Rocky Linux SIG/Security yum/dnf repository
+ Also usable on other Enterprise Linux distributions (RHEL, AlmalLinux, etc.)

+ Red Hat's stable kABI and "weak—-modules" allow same build to work within a minor version
+ Update to LKRG 1.0 for 9.6 and 8.10 has been built and tested and is pending publication

In Rocky Linux from CIQ - Hardened (RLC-H), LKRG is enabled out of the box and is supported

by CIQ. Moreover, it 1is signed to be part of the UEFI Secure Boot chain starting with keys
pre-installed in off-the-shelf hardware.

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 22 / 28



Linux Kernel Runtime Guard (LKRG) 1.0
Performance 1mpact

* Adding up to performance impact are:

+ Relatively infrequent kernel integrity checks, which are somewhat time-consuming
Relatively quick but frequent task credentials and control flow checks
Keeping track of legitimate changes

+ + +

Function hooking overhead

Numerous benchmarks were run to estimate LKRG’s performance impact, which was found to vary
greatly between different workloads. Some are not impacted at all (such as compute-only
userspace workloads), while others are impacted significantly. A run of the Phoronix Test
Suite against LKRG 0.8 shows overall performance impact at 2.5%, as the geometric mean of 58
individual test results. Some extra optimizations contributed by CIQ to LKRG for 1.0 may
have reduced the performance impact slightly, as seen in individual tests we ran. OTOH, we
are planning to add more defenses after 1.0, and some may have extra performance cost.

We are in contact with Michael Larabel from Phoronix again, and we expect official Phoronix
benchmarks of 1.0 to be available in a few weeks.

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 23 / 26



Linux Kernel Runtime Guard (LKRG) 1.0

LKRG 1.0

* List of major changes from LKRG 0.9.9 to 1.0.0 is too long for this slide (see CHANGES)

* In shert, 1.0.0:
+ adds support for Linux 6.13+ (tested to 6.17-rc4)

+ adds support for forward-edge CFI (Intel CET IBT, KCFI)
+ reduces performance overhead (lockless task lookups, fewer and some lighter kprobes)
.|.

shrinks the codebase by ~2500 lines

$ git diff ——-shortstat v0.9.9..v1.0.0
144 files changed, 2279 insertions(+), 4700 deletions(-)

$ git shortlog -sn v0.9.9..v1.0.0
99 Solar Designer
30 Sultan Alsawaf
6 Vitaly Chikunov

Adam 'pi3' Zabrocki also remains active with the project this release cycle and going forward

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 24 [/ 26



Linux Kernel Runtime Guard (LKRG) 1.0

Potential future

Evolution towards even greater maturity
+ Cleaner source tree and code (adopt Linux kernel coding style)

Improved self-protection (more read-only, etc.)
Hiding own and the kernel's build specifics and load addresses

Kernel attack surface reduction (such as reduced exposure of user and net namespaces)

Detection and prevention of userspace attacks
General anomaly detection in combination with remote logging/analysis

Moving protection to higher privilege level (hypervisor, TEE)
+ However, sync/locking with the kernel may keep the kernel the leader

Protect eBPF, and protect from it
+ Integrity checking, allow list of eBPF program hashes (fuzzy to support systemd)

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025 25 / 26



Linux Kernel Runtime Guard (LKRG) 1.0
Contact information and credits

e-mail
Solar Designher <solar@openwall.com>

Twitter
@solardiz @Openwall @CtrlIQ

websites
https://lkrg.org https://www.openwall.com https://cig.com

LKRG is due to Adam 'pi3' Zabrocki and contributors (including me and others)

LKRG 1.0 release, Rocky Linux integration, and this talk are due to my work at
CIQ, the primary corporate sponsor of Rocky Linux https://cig.com

LKRG remote logging research and initial implementation have been sponsored by
Binarly software supply chain security platform https://binarly.io

Solar Designer / Openwall, CIQ Nullcon Berlin 2025 September 5, 2025

26 / 26



