Linux kernel remote logging: approaches, challenges, implementation

A talk by

Solar Designer <solarlopenwall.com>
Esolardiz

EOpenwall 7 https:77www.openwal l.com
Credits: LKRG, Binarly, CIQ/7Rocky L inux

March 1, 2024
Zagreb, Croatia

Psolardiz @Openwall BSideszagreb March 1, 2024 1 » 30



Linux kernel remote logging: approaches, challenges, implementation

Why remote logging

 Troub leshooting and post-mortem analyses of (non-)security incidents

+ System's local logs might be unavailable, Incomplete, or tampered with

+ There's commonly no way to know the local logs are complete and intact

 Centralized processing for SIEM, EDR,

% Comp li1ance

Psolardiz @Openwall BSideszagreb March 1, 2024 2 7 30



Linux kernel remote logging: approaches, challenges, implementation

Pre-existing remote logging solutions
% syslogd and its protocol - many implementations with varying features
k CORE-SDI ssyslog/msyslog - blockchain before it was cool, logging to SQL

* LinuxXx kernel netconsole

+ Uses syslog protocol

* rsyslog Reliable Event Logging Protocol (RELP)
+ Also supported in rsyslog's librelp, including over TLS since 2013

* NXLog
+ Not obviously Open Source - community edition under custom license

* systemd can export/import its journal to a remote node over HTTPS POSTS

Psolardiz @Openwall BSideszagreb March 1, 2024 S 7 %



Linux kernel remote logging: approaches, challenges, implementation
syslog

x De-facto standard on Unix and beyond since 1980s
+ Plaintext over Unix domain socket or UDP

 Specified Iin RFCs In 2000s

* Wikipedia lists the below:

The BSD syslog Protocol. RFC 3164 (obsoleted by RFC 5429)
Reliable Delivery for syslog. RFC 3195

he Syslog Protocol. RFC 5429

LS Transport Mapping for Syslog. RFC 5425

Transmission of Syslog Messages over UDP. RFC 5426
Textual Conventions for Syslog Management. RFC 5427
Signed Syslog Messages. RFC 5848

Datagram Transport Layer Security (DTLS) Transport Mapping for Syslog. RFC 6012
Transmission of Syslog Messages over TCP. RFC 6587

Psolardiz @Openwall BSideszagreb March 1, 2024 4 » 30



Linux kernel remote logging: approaches, challenges, implementation

CORE-SDI ssyslog/msyslog as announced on Bugtraq in 1998

DO YOU TRUST YOUR SYSTEM'S LOGS?

Secure System Logging

i FREE SOURCE CODE AVAILABLE &

CORE SDI S.A.

Introduces a new cryptographically secure system
logging tool.

SECURE SYSLOG (ssyslog) is available for UNIX systems. Designed to

replace the syslog daemon, ssyslog implements a cryptographic protocol called

PEO-1 that allows the remote auditing of system logs.

Auditing remains possible
even If an

Intruder gains superuser privileges in the system, the protocol

guarantees that the information logged before and during the intrusion process

iannot be modified without the auditor (on a remote, trusted host) noticing.

Psolardiz @Openwall BSideszagreb March 1, 2024 D 7



Linux kernel remote logging: approaches, challenges, implementation
Linux kernel netconsole
A standard feature of the Linux kernel
% Can be built into the kernel i1mage, but distros usually build as a module

% Sends kernel messages via syslog protocol over UDP
+ Unreliable and insecure transport - but simple and thus reliable setup

% Specialized and low-level enough that 11t:
+ Starts network logging early and doesn't fail even on a kernel panic
+ Requires Ethernet and manual specification of the target MAC address

* Intended to work over local Ethernet only, but also works over the Internet
+ Just specify the gateway's MAC address along with the target's IP address

@solardiz @Openwall BSideszagreb March 1, 2024 b 30



Linux kernel remote logging: approaches, challenges, implementation
systemd Journal export

A standard feature on modern Linux distros that use systemd
+ but not available on those that don't

* Everything Is logged locally first
+ Pro: can send previously unsent pre-reboot logs after a reboot
+ Con: cannot send what's never written (e.g., on kernel panic or disk full)

¥ Exporting only kernel messages requires tricky changes or wrapper scripts
+ " Journal: add concept of " journal namespaces” #14178" might help

* Client authentication not yet fully implemented?

+ "systemd- journal-remote using HTTPS & TrustedcCertificateFile neither
requires nor verifies client certificates #4092" open since 2016
+ "Journal-remote: bugfix to re-enable ssl| key check #10707" partial? fix?

@solardiz @Openwall BSideszagreb March 1, 2024 r 7 5%



Linux kernel remote logging: approaches, challenges, implementation

Linux Kernel Runtime Guard

 Project of Adam 'pi13' Zabrock
+ Brought under Openwall umbrella for i1ts first public release in 2018
+ Post-detection of (and response to) kernel rootkits and exploits
+ Openwall's most controversial project ever? beats even John the Ripper?

¥ Linux kernel module that performs
+ Runtime Iintegrity checking of the kernel

+ Detection of security vulnerability exploits against the kernel

* Delivery, storage, and processing of LKRG security events toson a remote
system IS a natural extension of LKRG's functionality

+ In their basic form, the events are just kernel |log messages

+ In an advanced form, they may also include remote-only messages and blobs
(e.g., kernel module, eBPF, and exploit program binaries or their hashes)

Psolardiz @Openwall BSideszagreb March 1, 2024 8 - 30



Linux kernel remote logging: approaches, challenges, implementation

Protocol security and operational needs and wishes

% Transport security (TLS-alike) - mandatory, with directionality options:
+ Strictly one-way (no two-way handshake => no forward secrecy, replay risks,
no or blind retransmits at this layer)
+ Two-way for handshake and acks only, one-way for actual messages
+ Two-way also for control messages pulled from server (for managed response)

+ Two-way also with ability to push control messages by server (ditto)

 Long-term encryption and authentication of messages and blobs - optional

+ No forward secrecy at this layer
+ Handy to have pass-through security via proxys/storage/relay servers

 Not too susceptible to (D)DoS
I + Even more importantly, not a traffic amplification oracle

Psolardiz @Openwall BSideszagreb March 1, 2024 8 7 2



Linux kernel remote logging: approaches, challenges, implementation
Protocol operational needs and wishes
% Handle concurrency (not mix up pieces of concurrent messages)
 "Reliable" delivery (queueing, retransmits)
* Congestion control (Jjust use TCP or-sand rate-limiting)

 Message prioritization ("kernel panic” sent out-of-band before pending blobs,
a reason to use UDP or more than one TCP connection)

% "Roaming” support (one-way vs. needing to re-handshake vs. sharing state)

* Message encapsulation layer (custom extensible, Cap'n Proto, protobuf)

Psolardiz @Openwall BSideszagreb March 1, 2024 10 » 30



Linux kernel remote logging: approaches, challenges, implementation

Transport security protocol options

 Noise protocol framework
+ Widely accepted by security community (WireGuard in Linux kernel, etc.)

+ Flexible (many handshake pattern options, crypto primitives agility)
+ One Noise instantiation (pattern, primitives) can be not too complex

“ TLS
+ Industry standard
+ Complex - "not our problem” If we use a library and keep It updated
+ There will be non-updated systems, so this merely shifts responsibility

+ Brings one-way option mostly out of consideration
+ Brings doing it 100% from kernel mostly out of consideration

+ Already exists in upstream kernel, but not always built In distros
+ Handshake iIn userspace, message sending from kernel still an option

@solardiz @Openwall BSideszagreb March 1, 2024 11 -~ 30



Linux kernel remote logging: approaches, challenges, implementation
Transport security protocol building blocks
 NaCl (pronounced "salt”) provides DJB primitives

% Noise protocol implementations, with choice between:
+ Established DJB primitives (Curve?2>53519, ChaCha20, Poly1305)
+ libhydrogen vO (Noise proper), Monocypher-Handshake (Noise-alike)
+ Legacy DJB primitives (Curve2?2>5>519, SalsaZ20, Poly1305)
+ Ori1ginal NacCl, TweetNacl, libsodium
+ Newer DJB primitives (CurveZ2>319, Gimli)
+ libhydrogen (Noise proper wWwith Gimli)
+ NIST primitives (NIST curves, AES, SHA-512)
+ Weird combination, AES in software is cache-timing-unsafe

% TLS 1mplementations
l + Also choice of primitives, and NIST not so weird

Bsolardiz @Openwall BSideszagreb March 1, 2024 2 7 8



Linux kernel remote logging: approaches, challenges, implementation

Noise handshake patterns
 Noise can optionally authenticate the parties by their static keys
 Noise has both one-way (non-J)handshake and two-way handshake patterns
% We can choose a two-way pattern usable as one-way on nos/before response
 If a response never arrives, wWe can be restarting the handshake for each

message Indefinitely (include payload in "first® messages)
+ Operating like a one-way pattern would

% One such pattern Is "IK"
+ This 1s the one used by WireGuard
+ Unfortunately, not readily in libhydrogen

Psolardiz @Openwall BSideszagreb March 1, 2024 15 v 5©



Linux kernel remote logging: approaches, challenges, implementation

Messages vs. stream

x Noise IS message-oriented

 Noise over UDP is a perfect fit (one datagram at a time, size in header)

% Noise over TCP Is trickier (receive stream, but decrypt Iindividual messages),

our options are:

+ Introduce plaintext header with message length field (followed by Noise
message of that length)

+ Alternate encrypted metadata (containing next message's length) and actual
messages (both Noise)
+ Yet the individual message lengths would often be exposed via separate

TCP segments

+ Send fixed-size messages With actual length in their header (encrypted)

+ Wasteful, but also mitigates traffic analysis

Bsolardiz @Openwall BSideszagreb March 1, 2024 14 » 30



Linux kernel remote logging: approaches, challenges, implementation

Message types or-7and numbers

% With Noise over TCP, we Just do a Noise handshake on (re)connect
+ The handshake messages arrive In order
+ There's no point In redoing a handshake within a TCP connection

* With Noise over UDP, we need to distinguish handshake vs. data messages
+ Messages can arrive out of order
+ Handshake can be restarted at any time without any other indication
+ With multi-message handshake patterns, we need to distinguish the steps
+ We can Introduce a header containing message type or-sand number
+ Alternatively, we can ensure each type has its distinct size range
+ libhydrogen has built-in support for message numbers, but that's to fail
decryption of unexpected messages
+ Not what we need here, but useful against replay within a TCP stream

@solardiz @Openwall BSideszagreb March 1, 2024 1S 7 5@



Linux kernel remote logging: approaches, challenges, implementation

Imp lementation plan

% Proceed with a trial implementation of a Noise protocol with DJB primitives
+ Pros: not too complex yet not custom, security community's choice, agile
+ Cons: possibly not as "serious-sounding’ to some users as TLS+NIST would be

% Choose Gimli1 over ChaChaZ20+Poly1305
+ Pros: newer, smaller, all-in-one, peer-reviewed, readily 1n libhydrogen
+ Cons: newer so maybe not as peer-reviewed as ChacChaZ0+Poly130> yet

* Start with the trivial Noise pattern "N" and without an encapsulation layer

* Start with either TCP or UDP depending on implementation constraints
+ Noise lets us add or switch to the other later

* In the end, proceeded with TCP and plaintext Noise message length headers

@solardiz @Openwall BSideszagreb March 1, 2024 16 » 30



Linux kernel remote logging: approaches, challenges, implementation

More decisions were yet to make

% Transport security is Just one C(important) tip of the iceberg

* Many non-trivial design and implementation decisions to make in other areas

+ Concurrency
+ Recursion
+ Locking
+ Deadlock and priority inversion risks
+ QueueiIng
+ Failure handling

* Start simple (simplified), then revise and extend to deal with issues

Psolardiz @Openwall BSideszagreb March 1, 2024 17 » 30



Linux kernel remote logging: approaches, challenges, implementation

When and where to send from
Messages can be (attempted to be) sent to the remote...

¥ Right upon the corresponding event (same places where we currently printk)
+ directly from LKRG's code
+ or from an extra console we'd register with the kernel
+ or from a hackish hook I1nto printk

 From a pre-existing work queue (runs from a pre-existing kworker thread)
% From an own kthread (that we'd spawn)
* From userspace
+ From a service process we'd spawn/manage externally or bys/from the kernel
I + fork_usermode_driver on Linux 5.9+, fork_usermode_blob before

Psolardiz @Openwall BSideszagreb March 1, 2024 18 » 30



Linux kernel remote logging: approaches, challenges, implementation

Send right away? Not so easy.

 Execution context can vary - task, hw interrupt, sw interrupt ("bottom half")
+ LKRG's kprobes are usually optimized to ftrace, but when they are not we're

In INTS handler

% Network stack APIs might not be safely usable In the current context
+ Tried "in_interrupt() 7 buffer_and_send_later() : send_right_away()”
+ Too often true and wasn't sufficient to consistently avoid i1ssues

% Sending could delay further processing
+ Even LKRG's security response such as killing a task could be delayed
+ Not strictly a new problem: some existing console drivers could do It
+ AS a separate sub-project: need to rework logging vs. response”?

* Recursion Is a concern (trying to send a message can generate an event)

@solardiz @Openwall BSideszagreb March 1, 2024 9 7 50



Linux kernel remote logging: approaches, challenges, implementation
Linux printk recursion

 Within our supported kernel versions, Linux switched from almost disallowing
printk recursion to allowing up to 3 levels of recursion

% Linux has tricky custom logic to detect recursion

Old:
% IT a crash 1s occurring during printk() on this CPU,
* then try to get the crash message out but make sure
* we can't deadlock. Otherwise just return to avoid the
* recursion and return - but flag the recursion so that
% 1t can be printed at the next appropriate moment:
New:

#def ine PRINTK_MAX _RECURSION 3

Psolardiz @Openwall BSideszagreb March 1, 2024 20 7 30



Linux kernel remote logging: approaches, challenges, implementation

Potential deadlock
 When sending right away (literal recursion)

lock_net(); % for our socket, etc. */
send(); /% generates another event, recurses to the above v

 When sending buffered events e.g. from a work queue (not recursion)
lock_buf¢); % for reading from and then emptying the buffer x/
send () ; /% generates another event, reaches buffering, so: X/

lock_buf(); % elsewhere Iin our code tree, for adding to the buffer */

% Solution (kind of): use a trylock before reading buffer, postpone if locked

@solardiz @Openwall BSideszagreb March 1, 2024 21 7



Linux kernel remote logging: approaches, challenges, implementation
Priority i1nversion

% Another reason why we'd buffer and send later I1s to avoid delaying further

processing in our current code path
+ which is potentially timing sensitive and high-priority

* However, we could end up waiting anyway - on the buffer lock
+ which 1s acquired by our lower-priority work queue 7/ kthread - syscall

% Solution (kind of): acquire the buffer lock only briefly, to copy the buffer
content (full or a portion) to a local buffer, release the lock, send the

local buffer, re-acquire the lock if there's more to send
+ Linux kernel's own printk vs. syslog(2) similarly releases the lock during

copy_to_user, then re-acquires
+ Issue: what to do if the sending fails? Re-add to buffer? That's potential
re-ordering, and what if buffer full by then?

@solardiz @Openwall BSideszagreb March 1, 2024 22 7 50



Linux kernel remote logging: approaches, challenges, implementation

What kind of buffer(s)
% Solution (kind of): a ring of separate buffers with their separate locks

¥ Linux switched from simpler to complex prb (for “printk ring buffer”) within

our supported versions
+ So we can't easily plug Into and reuse their buffer iInternals, but we can

reuse the concepts - maybe later

% Meanwhi le, we can access the kernel's existing ring buffer (whatever 1t Is8)
via the high-level devkmsg_read
+ Intended for userspace, ends In a copy_to_user
+ If we don't have a valid __user pointer, we could let this EFAULT, then
I extract from file->private_data

Psolardiz @Openwall BSideszagreb March 1, 2024 28 7 50



Linux kernel remote logging: approaches, challenges, implementation

Send/buffer from a "console"? Pros.

Successful experiment: Instead of adding code to LKRG's own p_print_log,
register an extra console with the kernel and send from there. Pros:

% Can capturessend all kernel messages, not only LKRG'S (we can filter)

 Usable separately from LKRG (the experiment was a separate kernel module),
and provides functionality useful even without LKRG (e.g., for system
troubleshooting - similar to netconsole, but not-so-low-level and with a

transport security layer we can add, which netconsole lacks)

* We don't need to provide our own buffer for printf-formatting a kernel
message - we Just printk with format like LKRG did so far

 Decoupling of LKRG code from the sending code

Psolardiz @Openwall BSideszagreb March 1, 2024 24 7 30



Linux kernel remote logging: approaches, challenges, implementation

Send/buffer from a "console"? Cons.

% Other parts of the kernel, modules, and maybe even userspace root can spoof
kernel messages and we'd have a hard time extracting genuine LKRG messages

% The decoupling Is not good enough to eliminate the need for further buffering
and postponed processing

% Greater risk of recursion 1If we send more than LKRG'sS own messages and do soO
right away (can avoid that)

 Obeys console log level setting, which is a useful feature for a generic
remote console, but it's an extra way to silence LKRG and besides we could
want to keep LKRG's "ALIVE" messages hidden from local consoles (remote-only)

We' Ll also be sending something from elsewhere in LKRG long-term anyway

-

Psolardiz @Openwall BSideszagreb March 1, 2024 25 7 5%



Linux kernel remote logging: approaches, challenges, implementation

When and where to send from - decision

% Do register a custom console, but don't send right from there and don't use

the message supplied to the handler
+ Instead, merely queue a "work"” to run from a pre-existing kworker thread

* Also, queue the same kind of "work™ from LKRG'sS own code when It knows it's

Jjust logged a message (redundant)

¥ In the queued "work"”, trylock our socket, read from the kernel message buffer
via the high-level API, encrypt, and send (if necessary, also [relconnect)

To reiterate, other decisions so far:

Use libhydrogen to implement Noise, initially the trivial pattern "N°
Use TCP and plaintext Noise message length headers

0
n¢

Psolardiz @Openwall BSideszagreb March 1, 2024 26 7 53U



Linux kernel remote logging: approaches, challenges, implementation

Initial 1mplementation

¥ Released in LKRG 0.9.8 on February 28, 2024
+ Along with builds for Rocky Enterprise Linux 8.9 and 9.3 via SIG/Security

% Logs not only messages generated by LKRG, but also all other kernel messages

¥ The sending component IS In the LKRG kernel module 1tself

+ Communication I1s over a TCP socket opened write-only, which [imits LKRG'S
remote attack surface - great

+ Write-only Is possible due to use of the "N" pattern, which unfortunately
precludes implementation of forward secrecy - not great

* The receiving and logging counterpart is in a userspace daemon, lkrg-logger

* There are also additional userspace utilities, lkrg-keygen and lkrg-logctl

@solardiz @Openwall BSideszagreb March 1, 2024 2y 7



Linux kernel remote logging: approaches, challenges, implementation

Limitations

% Replay protection iIs partial - messages from the middle of a TCP connection
cannot be replayed on their own (won't be accepted), but an entire TCP
connection or i1ts starting portion can be
+ Something to improve If we can (the one-way communication limits this)

 There's no explicit server authentication, however security against a
spoofed/MITM server 1s achieved through only encrypting to the correct
server s pre-configured public key
+ May be fine as-iIs (and Is also a side-effect of one-way communication)

% There's currently no explicit client authentication
+ A major shortcoming to be addressed
+ Only clients with knowledge of the server's public key can send messages
that would be accepted by the server, but that's not proper authentication

@solardiz @Openwall BSideszagreb March 1, 2024 728 7 50



-

Linux kernel remote logging: approaches, challenges, implementation

Hindsight and the future

The current implementation achieves quite little over being in userspace
+ Not having a userspace sender process, It can't get 00OM-killed, etc.

Our use of Linux kernel's networking APIs I1s at a higher level than
netconsole’'s, so that configuration 1s easier and not tied to Ethernet

Unfortunately, 1t's also too high-level to work after a kernel panic, which
would have been a good reason to have this In the kernel
+ "Net: Implement deferred panic #314" is a workaround idea

Many i1deas are not yet implemented - let's see how the Iinitial release is
received and used, what's actually in demand, and maybe what's contributed

Remote logging functionality may also be made available separately from LKRG

Psolardiz @Openwall BSideszagreb March 1, 2024 29 7 50



Linux kernel remote logging: approaches, challenges, implementation

Contact Information and credits

e-mal l
Solar Designer <solarlopenwall.com>

Twitter
Esolardiz EOpenwall

webs i tes
https:/77wWwwWww.openwal l.com https:771lkrg.org

This research and initial implementation

In LKRG have been sponsored by Binarly
software supply chain security platform

https:7/binarly. 10

The public release, Rocky Linux integration, and this talk are due to my work
at CIQ, the primary corporate sponsor of Rocky Linux

https:77ciq.com

Psolardiz @Openwall BSideszagreb March 1, 2024 30 7 30



