/* * This version is derived from the original implementation of FreeSec * (release 1.1) by David Burren. I've reviewed the changes made in * OpenBSD (as of 2.7) and modified the original code in a similar way * where applicable. I've also made it reentrant, reduced its memory * usage (with only minimal performance impact), and made the handling * of invalid salts mostly UFC-crypt compatible. * - Solar Designer */ /* * FreeSec: libcrypt for NetBSD * * Copyright (c) 1994 David Burren * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of other contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Owl: Owl/packages/glibc/crypt_freesec.c,v 1.6 2010/02/20 14:45:06 solar Exp $ * $Id: crypt.c,v 1.15 1994/09/13 04:58:49 davidb Exp $ * * This is an original implementation of the DES and the crypt(3) interfaces * by David Burren . * * An excellent reference on the underlying algorithm (and related * algorithms) is: * * B. Schneier, Applied Cryptography: protocols, algorithms, * and source code in C, John Wiley & Sons, 1994. * * Note that in that book's description of DES the lookups for the initial, * pbox, and final permutations are inverted (this has been brought to the * attention of the author). A list of errata for this book has been * posted to the sci.crypt newsgroup by the author and is available for FTP. * * ARCHITECTURE ASSUMPTIONS: * This code used to have some nasty ones, but these have been removed * by now. The code requires a 32-bit integer type, though. */ #include #include #ifdef TEST #include #endif #include "crypt_freesec.h" #define _PASSWORD_EFMT1 '_' static const u_char IP[64] = { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; static const u_char key_perm[56] = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; static const u_char key_shifts[16] = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 }; static const u_char comp_perm[48] = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; /* * No E box is used, as it's replaced by some ANDs, shifts, and ORs. */ static const u_char sbox[8][64] = { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }, { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }, { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }, { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }, { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }, { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }, { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }, { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } }; static const u_char pbox[32] = { 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 }; static const u_int32_t bits32[32] = { 0x80000000, 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000, 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000, 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 }; static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; static const u_char ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; /* 0000000000111111111122222222223333333333444444444455555555556666 */ /* 0123456789012345678901234567890123456789012345678901234567890123 */ /* * We match the behavior of UFC-crypt on systems where "char" is signed by * default (the majority), regardless of char's signedness on our system. */ static inline int ascii_to_bin(char ch) { signed char sch = ch; int retval; retval = sch - '.'; if (sch >= 'A') { retval = sch - ('A' - 12); if (sch >= 'a') retval = sch - ('a' - 38); } retval &= 0x3f; return retval; } /* * When we choose to "support" invalid salts, nevertheless disallow those * containing characters that would violate the passwd file format. */ static inline int ascii_is_unsafe(char ch) { return !ch || ch == '\n' || ch == ':'; } static void init_ip_k(struct _crypt_extended_shared *shared) { int i, j, k, inbit, obit; u_int32_t il, ir, fl, fr; const u_int32_t *bits28, *bits24; u_char inv_key_perm[64]; u_char inv_comp_perm[56]; u_char init_perm[64], final_perm[64]; bits24 = (bits28 = bits32 + 4) + 4; /* * Set up the initial & final permutations into a useful form, and * initialise the inverted key permutation. */ for (i = 0; i < 64; i++) { init_perm[final_perm[i] = IP[i] - 1] = i; inv_key_perm[i] = 255; } /* * Invert the key permutation and initialise the inverted key * compression permutation. */ for (i = 0; i < 56; i++) { inv_key_perm[key_perm[i] - 1] = i; inv_comp_perm[i] = 255; } /* * Invert the key compression permutation. */ for (i = 0; i < 48; i++) { inv_comp_perm[comp_perm[i] - 1] = i; } /* * Set up the OR-mask arrays for the initial and final permutations, * and for the key initial and compression permutations. */ for (k = 0; k < 16; k++) { for (i = 0; i < 16; i++) { il = ir = fl = fr = 0; for (j = 0; j < 4; j++) { inbit = 4 * k + j; if (i & bits8[j + 4]) { if ((obit = init_perm[inbit]) < 32) il |= bits32[obit]; else ir |= bits32[obit - 32]; if ((obit = final_perm[inbit]) < 32) fl |= bits32[obit]; else fr |= bits32[obit - 32]; } } shared->ip_maskl[k][i] = il; shared->ip_maskr[k][i] = ir; shared->fp_maskl[k][i] = fl; shared->fp_maskr[k][i] = fr; il = ir = 0; for (j = 0; j < 4 - (k & 1); j++) { inbit = 4 * k + j; if (i & bits8[j + 4]) { if ((obit = inv_key_perm[inbit]) == 255) continue; if (obit < 28) il |= bits28[obit]; else ir |= bits28[obit - 28]; } } shared->key_perm_maskl[k][i] = il; shared->key_perm_maskr[k][i] = ir; } } for (k = 0; k < 8; k++) { for (i = 0; i < 8; i++) { il = ir = 0; for (j = 0; j < 3; j++) { inbit = 7 * k + j; if (i & bits8[j + 5]) { if ((obit = inv_comp_perm[inbit]) == 255) continue; if (obit < 24) il |= bits24[obit]; else ir |= bits24[obit - 24]; } } shared->comp_maskl0[k][i] = il; shared->comp_maskr0[k][i] = ir; } for (i = 0; i < 16; i++) { il = ir = 0; for (j = 3; j < 7; j++) { inbit = 7 * k + j; if (i & bits8[j + 1]) { if ((obit = inv_comp_perm[inbit]) == 255) continue; if (obit < 24) il |= bits24[obit]; else ir |= bits24[obit - 24]; } } shared->comp_maskl1[k][i] = il; shared->comp_maskr1[k][i] = ir; } } } static void init_s(struct _crypt_extended_shared *shared) { int i, j, b; u_char u_sbox[8][64]; u_char un_pbox[32]; /* * Invert the S-boxes, reordering the input bits. */ for (i = 0; i < 8; i++) for (j = 0; j < 64; j++) { b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); u_sbox[i][j] = sbox[i][b]; } /* * Invert the P-box permutation, and convert into OR-masks for * handling the output of the S-box arrays setup above. */ for (i = 0; i < 32; i++) un_pbox[pbox[i] - 1] = i; for (b = 0; b < 8; b++) { for (i = 0; i < 64; i++) { u_int32_t p = 0; for (j = 0; j < 4; j++) { if (u_sbox[b][i] & bits8[j + 4]) p |= bits32[un_pbox[4 * b + j]]; } shared->psbox[b][i] = p; } } } void _crypt_extended_init(struct _crypt_extended_shared *shared) { init_ip_k(shared); init_s(shared); } static void des_init_local(struct _crypt_extended_local *local) { local->old_rawkey0 = local->old_rawkey1 = 0; local->saltbits = 0; local->old_salt = 0; local->initialized = 1; } static void setup_salt(u_int32_t salt, struct _crypt_extended_local *local) { u_int32_t obit, saltbit, saltbits; int i; if (salt == local->old_salt) return; local->old_salt = salt; saltbits = 0; saltbit = 1; obit = 0x800000; for (i = 0; i < 24; i++) { if (salt & saltbit) saltbits |= obit; saltbit <<= 1; obit >>= 1; } local->saltbits = saltbits; } static int des_setkey(const u_char *key, const struct _crypt_extended_shared *shared, struct _crypt_extended_local *local) { u_int32_t k0, k1, rawkey0, rawkey1; int shifts, round; rawkey0 = (u_int32_t)(u_char)key[3] | ((u_int32_t)(u_char)key[2] << 8) | ((u_int32_t)(u_char)key[1] << 16) | ((u_int32_t)(u_char)key[0] << 24); rawkey1 = (u_int32_t)(u_char)key[7] | ((u_int32_t)(u_char)key[6] << 8) | ((u_int32_t)(u_char)key[5] << 16) | ((u_int32_t)(u_char)key[4] << 24); if ((rawkey0 | rawkey1) && rawkey0 == local->old_rawkey0 && rawkey1 == local->old_rawkey1) { /* * Already setup for this key. * This optimisation fails on a zero key (which is weak and * has bad parity anyway) in order to simplify the starting * conditions. */ return 0; } local->old_rawkey0 = rawkey0; local->old_rawkey1 = rawkey1; /* * Do key permutation and split into two 28-bit subkeys. */ { int i, inbit; k0 = k1 = 0; for (i = 0, inbit = 28; i < 8; i++, inbit -= 4) { k0 |= shared->key_perm_maskl[i][(rawkey0 >> inbit) & 0xf] | shared->key_perm_maskl[i + 8][(rawkey1 >> inbit) & 0xf]; k1 |= shared->key_perm_maskr[i][(rawkey0 >> inbit) & 0xf] | shared->key_perm_maskr[i + 8][(rawkey1 >> inbit) & 0xf]; } } /* * Rotate subkeys and do compression permutation. */ shifts = 0; for (round = 0; round < 16; round++) { u_int32_t t0, t1; shifts += key_shifts[round]; t0 = (k0 << shifts) | (k0 >> (28 - shifts)); t1 = (k1 << shifts) | (k1 >> (28 - shifts)); { int i, inbit; u_int32_t kl, kr; kl = kr = 0; inbit = 25; for (i = 0; i < 4; i++) { kl |= shared->comp_maskl0[i][(t0 >> inbit) & 7] | shared->comp_maskl0[i + 4][(t1 >> inbit) & 7]; kr |= shared->comp_maskr0[i][(t0 >> inbit) & 7] | shared->comp_maskr0[i + 4][(t1 >> inbit) & 7]; inbit -= 4; kl |= shared->comp_maskl1[i][(t0 >> inbit) & 0xf] | shared->comp_maskl1[i + 4][(t1 >> inbit) & 0xf]; kr |= shared->comp_maskr1[i][(t0 >> inbit) & 0xf] | shared->comp_maskr1[i + 4][(t1 >> inbit) & 0xf]; inbit -= 3; } local->en_keysl[round] = kl; local->en_keysr[round] = kr; } } return 0; } static int do_des(u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count, const struct _crypt_extended_shared *shared, struct _crypt_extended_local *local) { /* * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */ u_int32_t l, r, *kl, *kr, *kl1, *kr1; u_int32_t f, r48l, r48r, saltbits; int round; kl1 = local->en_keysl; kr1 = local->en_keysr; /* * Do initial permutation (IP). */ l = r = 0; if (l_in | r_in) { int i, inbit; for (i = 0, inbit = 28; i < 8; i++, inbit -= 4) { l |= shared->ip_maskl[i][(l_in >> inbit) & 0xf] | shared->ip_maskl[i + 8][(r_in >> inbit) & 0xf]; r |= shared->ip_maskr[i][(l_in >> inbit) & 0xf] | shared->ip_maskr[i + 8][(r_in >> inbit) & 0xf]; } } saltbits = local->saltbits; while (count--) { /* * Do each round. */ kl = kl1; kr = kr1; round = 16; while (round--) { /* * Expand R to 48 bits (simulate the E-box). */ r48l = ((r & 0x00000001) << 23) | ((r & 0xf8000000) >> 9) | ((r & 0x1f800000) >> 11) | ((r & 0x01f80000) >> 13) | ((r & 0x001f8000) >> 15); r48r = ((r & 0x0001f800) << 7) | ((r & 0x00001f80) << 5) | ((r & 0x000001f8) << 3) | ((r & 0x0000001f) << 1) | ((r & 0x80000000) >> 31); /* * Do salting for crypt() and friends, and * XOR with the permuted key. */ f = (r48l ^ r48r) & saltbits; r48l ^= f ^ *kl++; r48r ^= f ^ *kr++; /* * Do S-box lookups (which shrink it back to 32 bits) * and do the P-box permutation at the same time. */ f = shared->psbox[0][r48l >> 18] | shared->psbox[1][(r48l >> 12) & 0x3f] | shared->psbox[2][(r48l >> 6) & 0x3f] | shared->psbox[3][r48l & 0x3f] | shared->psbox[4][r48r >> 18] | shared->psbox[5][(r48r >> 12) & 0x3f] | shared->psbox[6][(r48r >> 6) & 0x3f] | shared->psbox[7][r48r & 0x3f]; /* * Now that we've permuted things, complete f(). */ f ^= l; l = r; r = f; } r = l; l = f; } /* * Do final permutation (inverse of IP). */ { int i, inbit; u_int32_t lo, ro; lo = ro = 0; for (i = 0, inbit = 28; i < 8; i++, inbit -= 4) { lo |= shared->fp_maskl[i][(l >> inbit) & 0xf] | shared->fp_maskl[i + 8][(r >> inbit) & 0xf]; ro |= shared->fp_maskr[i][(l >> inbit) & 0xf] | shared->fp_maskr[i + 8][(r >> inbit) & 0xf]; } *l_out = lo; *r_out = ro; } return 0; } static int des_cipher(const u_char *in, u_char *out, u_int32_t salt, int count, const struct _crypt_extended_shared *shared, struct _crypt_extended_local *local) { u_int32_t l_out, r_out, rawl, rawr; int retval; setup_salt(salt, local); rawl = (u_int32_t)(u_char)in[3] | ((u_int32_t)(u_char)in[2] << 8) | ((u_int32_t)(u_char)in[1] << 16) | ((u_int32_t)(u_char)in[0] << 24); rawr = (u_int32_t)(u_char)in[7] | ((u_int32_t)(u_char)in[6] << 8) | ((u_int32_t)(u_char)in[5] << 16) | ((u_int32_t)(u_char)in[4] << 24); retval = do_des(rawl, rawr, &l_out, &r_out, count, shared, local); out[0] = l_out >> 24; out[1] = l_out >> 16; out[2] = l_out >> 8; out[3] = l_out; out[4] = r_out >> 24; out[5] = r_out >> 16; out[6] = r_out >> 8; out[7] = r_out; return retval; } char * _crypt_extended_r(const char *key, const char *setting, const struct _crypt_extended_shared *shared, struct _crypt_extended_local *local) { int i; u_int32_t count, salt, l, r0, r1, keybuf[2]; u_char *p, *q; if (!local->initialized) des_init_local(local); /* * Copy the key, shifting each character up by one bit * and padding with zeros. */ q = (u_char *) keybuf; while (q - (u_char *) keybuf < sizeof(keybuf)) { *q++ = *key << 1; if (*key) key++; } if (des_setkey((u_char *) keybuf, shared, local)) return NULL; if (*setting == _PASSWORD_EFMT1) { /* * "new"-style: * setting - underscore, 4 chars of count, 4 chars of salt * key - unlimited characters */ for (i = 1, count = 0; i < 5; i++) { int value = ascii_to_bin(setting[i]); if (ascii64[value] != setting[i]) return NULL; count |= value << (i - 1) * 6; } if (!count) return NULL; for (i = 5, salt = 0; i < 9; i++) { int value = ascii_to_bin(setting[i]); if (ascii64[value] != setting[i]) return NULL; salt |= value << (i - 5) * 6; } while (*key) { /* * Encrypt the key with itself. */ if (des_cipher((u_char *) keybuf, (u_char *) keybuf, 0, 1, shared, local)) return NULL; /* * And XOR with the next 8 characters of the key. */ q = (u_char *) keybuf; while (q - (u_char *) keybuf < sizeof(keybuf) && *key) *q++ ^= *key++ << 1; if (des_setkey((u_char *) keybuf, shared, local)) return NULL; } memcpy(local->output, setting, 9); local->output[9] = '\0'; p = (u_char *) local->output + 9; } else { /* * "old"-style: * setting - 2 chars of salt * key - up to 8 characters */ count = 25; if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1])) return NULL; salt = (ascii_to_bin(setting[1]) << 6) | ascii_to_bin(setting[0]); local->output[0] = setting[0]; local->output[1] = setting[1]; p = (u_char *) local->output + 2; } setup_salt(salt, local); /* * Do it. */ if (do_des(0, 0, &r0, &r1, count, shared, local)) return NULL; /* * Now encode the result... */ l = (r0 >> 8); *p++ = ascii64[(l >> 18) & 0x3f]; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; l = (r0 << 16) | ((r1 >> 16) & 0xffff); *p++ = ascii64[(l >> 18) & 0x3f]; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; l = r1 << 2; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; *p = 0; return local->output; } #ifndef TEST_STATIC #define TEST_STATIC /* not static */ #endif #ifdef TEST static char * _crypt_extended(const char *key, const char *setting) { TEST_STATIC int initialized = 0; TEST_STATIC struct _crypt_extended_shared shared; /* "local" must be static since it holds our own return value */ static struct _crypt_extended_local local; if (!initialized) { memset(&shared, 's', sizeof(shared)); memset(&local, 'l', sizeof(local)); _crypt_extended_init(&shared); initialized = 1; local.initialized = 0; } return _crypt_extended_r(key, setting, &shared, &local); } static const struct { char *hash; char *pw; } tests[] = { /* "new"-style */ {"_J9..CCCCXBrJUJV154M", "U*U*U*U*"}, {"_J9..CCCCXUhOBTXzaiE", "U*U***U"}, {"_J9..CCCC4gQ.mB/PffM", "U*U***U*"}, {"_J9..XXXXvlzQGqpPPdk", "*U*U*U*U"}, {"_J9..XXXXsqM/YSSP..Y", "*U*U*U*U*"}, {"_J9..XXXXVL7qJCnku0I", "*U*U*U*U*U*U*U*U"}, {"_J9..XXXXAj8cFbP5scI", "*U*U*U*U*U*U*U*U*"}, {"_J9..SDizh.vll5VED9g", "ab1234567"}, {"_J9..SDizRjWQ/zePPHc", "cr1234567"}, {"_J9..SDizxmRI1GjnQuE", "zxyDPWgydbQjgq"}, {"_K9..SaltNrQgIYUAeoY", "726 even"}, {"_J9..SDSD5YGyRCr4W4c", ""}, {"_01234567IBjxKliXXRQ", "\xc3\x80" "1234abcd"}, {"_012345678OSGpGQRVHA", "\xc3\x80" "9234abcd"}, /* "old"-style, valid salts */ {"CCNf8Sbh3HDfQ", "U*U*U*U*"}, {"CCX.K.MFy4Ois", "U*U***U"}, {"CC4rMpbg9AMZ.", "U*U***U*"}, {"XXxzOu6maQKqQ", "*U*U*U*U"}, {"SDbsugeBiC58A", ""}, {"./xZjzHv5vzVE", "password"}, {"0A2hXM1rXbYgo", "password"}, {"A9RXdR23Y.cY6", "password"}, {"ZziFATVXHo2.6", "password"}, {"zZDDIZ0NOlPzw", "password"}, {"99PxawtsTfX56", "\xc3\x80" "1234abcd"}, {"99jcVcGxUZOWk", "\xc3\x80" "9234abcd"}, /* "old"-style, "reasonable" invalid salts, UFC-crypt behavior expected */ {"\001\002wyd0KZo65Jo", "password"}, {"a_C10Dk/ExaG.", "password"}, {"~\377.5OTsRVjwLo", "password"}, /* The below are erroneous inputs, so NULL return is expected/required */ {"", ""}, /* no salt */ {" ", ""}, /* setting string is too short */ {"a:", ""}, /* unsafe character */ {"\na", ""}, /* unsafe character */ {"_/......", ""}, /* setting string is too short for its type */ {"_........", ""}, /* zero iteration count */ {"_/!......", ""}, /* invalid character in count */ {"_/......!", ""}, /* invalid character in salt */ {NULL, NULL} }; int main(void) { int i; for (i = 0; tests[i].hash; i++) { char *hash = _crypt_extended(tests[i].pw, tests[i].hash); if (!hash && strlen(tests[i].hash) < 13) continue; /* expected failure */ if (!strcmp(hash, tests[i].hash)) continue; /* expected success */ puts("FAILED"); return 1; } puts("PASSED"); return 0; } #endif