Openwall GNU/*/Linux - a small security-enhanced Linux distro for servers
[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Date: Wed, 19 Apr 2017 00:41:40 +0200
From: Szabolcs Nagy <nsz@...t70.net>
To: musl@...ts.openwall.com
Subject: [PATCH] math: rewrite fma with mostly int arithmetics

the freebsd fma code failed to raise underflow exception in some
cases in nearest rounding mode (affects fmal too) e.g.

  fma(-0x1p-1000, 0x1.000001p-74, 0x1p-1022)

and the inexact exception may be raised spuriously since the fenv
is not saved/restored around the exact multiplication algorithm
(affects x86 fma too).

another issue is that the underflow behaviour when the rounded result
is the minimal normal number is target dependent, ieee754 allows two
ways to raise underflow for inexact results: raise if the result before
rounding is in the subnormal range (e.g. aarch64, arm, powerpc) or if
the result after rounding with infinite exponent range is in the
subnormal range (e.g. x86, mips, sh).

to avoid all these issues the algorithm was rewritten with mostly int
arithmetics and float arithmetics is only used to get correct rounding
and raise exceptions according to the behaviour of the target without
any fenv.h dependency. it also unifies x86 and non-x86 fma.

fmaf is not affected, fmal need to be fixed too.

this algorithm depends on a_clz_64 and it required a nasty volatile
hack: gcc seems to miscompile the FORCE_EVAL macro of libm.h on i386.
---
 src/math/fma.c | 582 ++++++++++++++++-----------------------------------------
 1 file changed, 158 insertions(+), 424 deletions(-)

attaching the new fma.c instead of a diff, it's more readable.

depends on the a_clz_64 patch and previous scalbn fix.

fmal should be possible to do in a similar way.

i expect it to be faster than the previous code on most targets as
the rounding mode is not changed and has less multiplications
(it is faster on x86_64 and i386), the code size is a bit bigger
though.

#include <stdint.h>
#include <float.h>
#include <math.h>
#include "atomic.h"

static inline uint64_t asuint64(double x)
{
	union {double f; uint64_t i;} u = {x};
	return u.i;
}

static inline double asdouble(uint64_t x)
{
	union {uint64_t i; double f;} u = {x};
	return u.f;
}

struct num { uint64_t m; int e; int sign; };

static struct num normalize(uint64_t x)
{
	int e = x>>52;
	int sign = e & 1<<11;
	e &= (1<<11)-1;
	x &= (1ull<<52)-1;
	if (!e) {
		int k = a_clz_64(x);
		x <<= k-11;
		e = -k+12;
	}
	x |= 1ull<<52;
	x <<= 1;
	e -= 0x3ff + 52 + 1;
	return (struct num){x,e,sign};
}

static void mul(uint64_t *hi, uint64_t *lo, uint64_t x, uint64_t y)
{
	uint64_t t1,t2,t3;
	uint64_t xlo = (uint32_t)x, xhi = x>>32;
	uint64_t ylo = (uint32_t)y, yhi = y>>32;

	t1 = xlo*ylo;
	t2 = xlo*yhi + xhi*ylo;
	t3 = xhi*yhi;
	*lo = t1 + (t2<<32);
	*hi = t3 + (t2>>32) + (t1 > *lo);
}

static int zeroinfnan(uint64_t x)
{
	return 2*x-1 >= 2*asuint64(INFINITY)-1;
}

double fma(double x, double y, double z)
{
	#pragma STDC FENV_ACCESS ON
	uint64_t ix = asuint64(x);
	uint64_t iy = asuint64(y);
	uint64_t iz = asuint64(z);

	if (zeroinfnan(ix) || zeroinfnan(iy))
		return x*y + z;
	if (zeroinfnan(iz)) {
		if (z == 0)
			return x*y + z;
		return z;
	}

	/* normalize so top 10bits and last bit are 0 */
	struct num nx, ny, nz;
	nx = normalize(ix);
	ny = normalize(iy);
	nz = normalize(iz);

	/* mul: r = x*y */
	uint64_t rhi, rlo, zhi, zlo;
	mul(&rhi, &rlo, nx.m, ny.m);
	/* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */

	/* align exponents */
	int e = nx.e + ny.e;
	int d = nz.e - e;
	/* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
	if (d > 0) {
		if (d < 64) {
			zlo = nz.m<<d;
			zhi = nz.m>>64-d;
		} else {
			zlo = 0;
			zhi = nz.m;
			e = nz.e - 64;
			d -= 64;
			if (d == 0) {
			} else if (d < 64) {
				rlo = rhi<<64-d | rlo>>d | !!(rlo<<64-d);
				rhi = rhi>>d;
			} else {
				rlo = 1;
				rhi = 0;
			}
		}
	} else {
		zhi = 0;
		d = -d;
		if (d == 0) {
			zlo = nz.m;
		} else if (d < 64) {
			zlo = nz.m>>d | !!(nz.m<<64-d);
		} else {
			zlo = 1;
		}
	}

	/* add */
	int sign = nx.sign^ny.sign;
	int samesign = !(sign^nz.sign);
	int nonzero = 1;
	if (samesign) {
		/* r += z */
		rlo += zlo;
		rhi += zhi + (rlo < zlo);
	} else {
		/* r -= z */
		uint64_t t = rlo;
		rlo -= zlo;
		rhi = rhi - zhi - (t < rlo);
		if (rhi>>63) {
			rlo = -rlo;
			rhi = -rhi-!!rlo;
			sign = !sign;
		}
		nonzero = !!rhi;
	}

	/* set rhi to top 63bit of the result (last bit is sticky) */
	if (nonzero) {
		e += 64;
		d = a_clz_64(rhi)-1;
		/* note: d > 0 */
		rhi = rhi<<d | rlo>>64-d | !!(rlo<<d);
	} else if (rlo) {
		d = a_clz_64(rlo)-1;
		if (d < 0)
			rhi = rlo>>1 | (rlo&1);
		else
			rhi = rlo<<d;
	} else {
		/* exact +-0 */
		return x*y + z;
	}
	e -= d;

	/* convert to double */
	int64_t i = rhi; /* in [1<<62,(1<<63)-1] */
	if (sign)
		i = -i;
	double r = i; /* in [0x1p62,0x1p63] */

	if (e < -1022-62) {
		/* result is subnormal before rounding */
		if (e == -1022-63) {
			double c = 0x1p63;
			if (sign)
				c = -c;
			if (r == c) {
				/* min normal after rounding, underflow depends
				   on arch behaviour which can be imitated by
				   a double to float conversion */
				float fltmin = 0x0.ffffff8p-63*FLT_MIN * r;
				return DBL_MIN/FLT_MIN * fltmin;
			}
			/* one bit is lost when scaled, add another top bit to
			   only round once at conversion if it is inexact */
			if (rhi << 53) {
				i = rhi>>1 | (rhi&1) | 1ull<<62;
				if (sign)
					i = -i;
				r = i;
				r = 2*r - c; /* remove top bit */
				volatile double uflow = DBL_MIN/FLT_MIN;
				uflow *= uflow;
			}
		} else {
			/* only round once when scaled */
			d = 10;
			i = ( rhi>>d | !!(rhi<<64-d) ) << d;
			if (sign)
				i = -i;
			r = i;
		}
	}
	return scalbn(r, e);
}

Powered by blists - more mailing lists

Your e-mail address:

Powered by Openwall GNU/*/Linux - Powered by OpenVZ