Follow @Openwall on Twitter for new release announcements and other news
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date: Sun, 11 Feb 2018 14:24:45 +0200
From: Mike Rapoport <rppt@...ux.vnet.ibm.com>
To: Igor Stoppa <igor.stoppa@...wei.com>
Cc: willy@...radead.org, rdunlap@...radead.org, corbet@....net,
        keescook@...omium.org, mhocko@...nel.org, labbott@...hat.com,
        jglisse@...hat.com, hch@...radead.org, cl@...ux.com,
        linux-security-module@...r.kernel.org, linux-mm@...ck.org,
        linux-kernel@...r.kernel.org, kernel-hardening@...ts.openwall.com
Subject: Re: [PATCH 1/6] genalloc: track beginning of allocations

On Sun, Feb 11, 2018 at 05:19:15AM +0200, Igor Stoppa wrote:
> The genalloc library is only capable of tracking if a certain unit of
> allocation is in use or not.
> 
> It is not capable of discerning where the memory associated to an
> allocation request begins and where it ends.
> 
> The reason is that units of allocations are tracked by using a bitmap,
> where each bit represents that the unit is either allocated (1) or
> available (0).
> 
> The user of the API must keep track of how much space was requested, if
> it ever needs to be freed.
> 
> This can cause errors being undetected.
> Examples:
> * Only a subset of the memory provided to an allocation request is freed
> * The memory from a subsequent allocation is freed
> * The memory being freed doesn't start at the beginning of an
>   allocation.
> 
> The bitmap is used because it allows to perform lockless read/write
> access, where this is supported by hw through cmpxchg.
> Similarly, it is possible to scan the bitmap for a sufficiently long
> sequence of zeros, to identify zones available for allocation.
> 
> This patch doubles the space reserved in the bitmap for each allocation,
> to track their beginning.
> 
> For details, see the documentation inside lib/genalloc.c
> 
> Signed-off-by: Igor Stoppa <igor.stoppa@...wei.com>
> ---
>  include/linux/genalloc.h |   4 +-
>  lib/genalloc.c           | 527 ++++++++++++++++++++++++++++++++++-------------
>  2 files changed, 390 insertions(+), 141 deletions(-)
> 
> diff --git a/include/linux/genalloc.h b/include/linux/genalloc.h
> index 872f930f1b06..dcaa33e74b1c 100644
> --- a/include/linux/genalloc.h
> +++ b/include/linux/genalloc.h
> @@ -32,7 +32,7 @@
> 
>  #include <linux/types.h>
>  #include <linux/spinlock_types.h>
> -#include <linux/atomic.h>
> +#include <linux/slab.h>
> 
>  struct device;
>  struct device_node;
> @@ -76,7 +76,7 @@ struct gen_pool_chunk {
>  	phys_addr_t phys_addr;		/* physical starting address of memory chunk */
>  	unsigned long start_addr;	/* start address of memory chunk */
>  	unsigned long end_addr;		/* end address of memory chunk (inclusive) */
> -	unsigned long bits[0];		/* bitmap for allocating memory chunk */
> +	unsigned long entries[0];	/* bitmap for allocating memory chunk */
>  };
> 
>  /*
> diff --git a/lib/genalloc.c b/lib/genalloc.c
> index ca06adc4f445..044347163acb 100644
> --- a/lib/genalloc.c
> +++ b/lib/genalloc.c
> @@ -26,6 +26,74 @@
>   *
>   * This source code is licensed under the GNU General Public License,
>   * Version 2.  See the file COPYING for more details.
> + *
> + *
> + *
> + * Encoding of the bitmap tracking the allocations
> + * -----------------------------------------------
> + *
> + * The bitmap is composed of units of allocations.
> + *
> + * Each unit of allocation is represented using 2 consecutive bits.
> + *
> + * This makes it possible to encode, for each unit of allocation,
> + * information about:
> + *  - allocation status (busy/free)
> + *  - beginning of a sequennce of allocation units (first / successive)
> + *
> + *
> + * Dictionary of allocation units (msb to the left, lsb to the right):
> + *
> + * 11: first allocation unit in the allocation
> + * 10: any subsequent allocation unit (if any) in the allocation
> + * 00: available allocation unit
> + * 01: invalid
> + *
> + * Example, using the same notation as above - MSb.......LSb:
> + *
> + *  ...000010111100000010101011   <-- Read in this direction.
> + *     \__|\__|\|\____|\______|
> + *        |   | |     |       \___ 4 used allocation units
> + *        |   | |     \___________ 3 empty allocation units
> + *        |   | \_________________ 1 used allocation unit
> + *        |   \___________________ 2 used allocation units
> + *        \_______________________ 2 empty allocation units
> + *
> + * The encoding allows for lockless operations, such as:
> + * - search for a sufficiently large range of allocation units
> + * - reservation of a selected range of allocation units
> + * - release of a specific allocation
> + *
> + * The alignment at which to perform the research for sequence of empty
> + * allocation units (marked as zeros in the bitmap) is 2^1.
> + *
> + * This means that an allocation can start only at even places
> + * (bit 0, bit 2, etc.) in the bitmap.
> + *
> + * Therefore, the number of zeroes to look for must be twice the number
> + * of desired allocation units.
> + *
> + * When it's time to free the memory associated to an allocation request,
> + * it's a matter of checking if the corresponding allocation unit is
> + * really the beginning of an allocation (both bits are set to 1).
> + *
> + * Looking for the ending can also be performed locklessly.
> + * It's sufficient to identify the first mapped allocation unit
> + * that is represented either as free (00) or busy (11).
> + * Even if the allocation status should change in the meanwhile, it
> + * doesn't matter, since it can only transition between free (00) and
> + * first-allocated (11).
> + *
> + * The parameter indicating to the *_free() function the size of the
> + * space that should be freed can be either set to 0, for automated
> + * assessment, or it can be specified explicitly.
> + *
> + * In case it is specified explicitly, the value is verified agaisnt what
> + * the library is tracking internally.
> + *
> + * If ever needed, the bitmap could be extended, assigning larger amounts
> + * of bits to each allocation unit (the increase must follow powers of 2),
> + * to track other properties of the allocations.
>   */
> 
>  #include <linux/slab.h>
> @@ -36,118 +104,230 @@
>  #include <linux/genalloc.h>
>  #include <linux/of_device.h>
> 
> +#define ENTRY_ORDER 1UL
> +#define ENTRY_MASK ((1UL << ((ENTRY_ORDER) + 1UL)) - 1UL)
> +#define ENTRY_HEAD ENTRY_MASK
> +#define ENTRY_UNUSED 0UL
> +#define BITS_PER_ENTRY (1U << ENTRY_ORDER)
> +#define BITS_DIV_ENTRIES(x) ((x) >> ENTRY_ORDER)
> +#define ENTRIES_TO_BITS(x) ((x) << ENTRY_ORDER)
> +#define BITS_DIV_LONGS(x) ((x) / BITS_PER_LONG)
> +#define ENTRIES_DIV_LONGS(x) (BITS_DIV_LONGS(ENTRIES_TO_BITS(x)))
> +
> +#define ENTRIES_PER_LONG BITS_DIV_ENTRIES(BITS_PER_LONG)
> +
> +/* Binary pattern of 1010...1010 that spans one unsigned long. */
> +#define MASK (~0UL / 3 * 2)
> +
> +/**
> + * get_bitmap_entry - extracts the specified entry from the bitmap
> + * @map: pointer to a bitmap
> + * @entry_index: the index of the desired entry in the bitmap
> + *
> + * Return: The requested bitmap.
> + */
> +static inline unsigned long get_bitmap_entry(unsigned long *map,
> +					    int entry_index)
> +{
> +	return (map[ENTRIES_DIV_LONGS(entry_index)] >>
> +		ENTRIES_TO_BITS(entry_index % ENTRIES_PER_LONG)) &
> +		ENTRY_MASK;
> +}
> +
> +
> +/**
> + * mem_to_units - convert references to memory into orders of allocation

Documentation/doc-guide/kernel-doc.rst recommends to to include brackets
for function comments. I haven't noticed any difference in the resulting
html, so I'm not sure if the brackets are actually required.

> + * @size: amount in bytes
> + * @order: power of 2 represented by each entry in the bitmap
> + *
> + * Returns the number of units representing the size.

Please s/Return/Return:/

> + */
> +static inline unsigned long mem_to_units(unsigned long size,
> +					 unsigned long order)
> +{
> +	return (size + (1UL << order) - 1) >> order;
> +}
> +
> +/**
> + * chunk_size - dimension of a chunk of memory, in bytes
> + * @chunk: pointer to the struct describing the chunk
> + *
> + * Return: The size of the chunk, in bytes.
> + */
>  static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
>  {
>  	return chunk->end_addr - chunk->start_addr + 1;
>  }
> 
> -static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
> +
> +/**
> + * set_bits_ll - according to the mask, sets the bits specified by
> + * value, at the address specified.
> + * @addr: where to write
> + * @mask: filter to apply for the bits to alter
> + * @value: actual configuration of bits to store
> + *
> + * Return: 0 upon success, -EBUSY otherwise
> + */
> +static int set_bits_ll(unsigned long *addr,
> +		       unsigned long mask, unsigned long value)
>  {
> -	unsigned long val, nval;
> +	unsigned long nval;
> +	unsigned long present;
> +	unsigned long target;
> 
>  	nval = *addr;
>  	do {
> -		val = nval;
> -		if (val & mask_to_set)
> +		present = nval;
> +		if (present & mask)
>  			return -EBUSY;
> +		target =  present | value;
>  		cpu_relax();
> -	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
> -
> +	} while ((nval = cmpxchg(addr, present, target)) != target);
>  	return 0;
>  }
> 
> -static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
> +
> +/**
> + * clear_bits_ll - according to the mask, clears the bits specified by
> + * value, at the address specified.
> + * @addr: where to write
> + * @mask: filter to apply for the bits to alter
> + * @value: actual configuration of bits to clear
> + *
> + * Return: 0 upon success, -EBUSY otherwise
> + */
> +static int clear_bits_ll(unsigned long *addr,
> +			 unsigned long mask, unsigned long value)
>  {
> -	unsigned long val, nval;
> +	unsigned long nval;
> +	unsigned long present;
> +	unsigned long target;
> 
>  	nval = *addr;
> +	present = nval;
> +	if (unlikely((present & mask) ^ value))
> +		return -EBUSY;
>  	do {
> -		val = nval;
> -		if ((val & mask_to_clear) != mask_to_clear)
> +		present = nval;
> +		if (unlikely((present & mask) ^ value))
>  			return -EBUSY;
> +		target =  present & ~mask;
>  		cpu_relax();
> -	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
> -
> +	} while ((nval = cmpxchg(addr, present, target)) != target);
>  	return 0;
>  }
> 
> -/*
> - * bitmap_set_ll - set the specified number of bits at the specified position
> +
> +/**
> + * get_boundary - verify that an allocation effectively
> + * starts at the given address, then measure its length.
>   * @map: pointer to a bitmap
> - * @start: a bit position in @map
> - * @nr: number of bits to set
> + * @start_entry: the index of the first entry in the bitmap
> + * @nentries: number of entries to alter
>   *
> - * Set @nr bits start from @start in @map lock-lessly. Several users
> - * can set/clear the same bitmap simultaneously without lock. If two
> - * users set the same bit, one user will return remain bits, otherwise
> - * return 0.
> + * Return: the length of an allocation, otherwise -EINVAL if the
> + * parameters do not refer to a correct allocation.
>   */
> -static int bitmap_set_ll(unsigned long *map, int start, int nr)
> +static int get_boundary(unsigned long *map, int start_entry, int nentries)
>  {
> -	unsigned long *p = map + BIT_WORD(start);
> -	const int size = start + nr;
> -	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
> -	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
> -
> -	while (nr - bits_to_set >= 0) {
> -		if (set_bits_ll(p, mask_to_set))
> -			return nr;
> -		nr -= bits_to_set;
> -		bits_to_set = BITS_PER_LONG;
> -		mask_to_set = ~0UL;
> -		p++;
> -	}
> -	if (nr) {
> -		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
> -		if (set_bits_ll(p, mask_to_set))
> -			return nr;
> -	}
> +	int i;
> +	unsigned long bitmap_entry;
> 
> -	return 0;
> +
> +	if (unlikely(get_bitmap_entry(map, start_entry) != ENTRY_HEAD))
> +		return -EINVAL;
> +	for (i = start_entry + 1; i < nentries; i++) {
> +		bitmap_entry = get_bitmap_entry(map, i);
> +		if (bitmap_entry == ENTRY_HEAD ||
> +		    bitmap_entry == ENTRY_UNUSED)
> +			return i;
> +	}
> +	return nentries - start_entry;
>  }
> 
> +
> +#define SET_BITS 1
> +#define CLEAR_BITS 0
> +
>  /*
> - * bitmap_clear_ll - clear the specified number of bits at the specified position
> + * alter_bitmap_ll - set or clear the entries associated with an allocation
> + * @alteration: indicates if the bits selected should be set or cleared
>   * @map: pointer to a bitmap
> - * @start: a bit position in @map
> - * @nr: number of bits to set
> + * @start: the index of the first entry in the bitmap
> + * @nentries: number of entries to alter
> + *
> + * The modification happens lock-lessly.
> + * Several users can write to the same map simultaneously, without lock.
>   *
> - * Clear @nr bits start from @start in @map lock-lessly. Several users
> - * can set/clear the same bitmap simultaneously without lock. If two
> - * users clear the same bit, one user will return remain bits,
> - * otherwise return 0.
> + * Return: If two users alter the same bit, to one it will return
> + * remaining entries, to the other it will return 0.

And what if there are three or four concurrent users? ;-)

I believe that a more elaborate description about what happens with
concurrent attempts to alter the bitmap would be really helpful.

>   */
> -static int bitmap_clear_ll(unsigned long *map, int start, int nr)
> +static int alter_bitmap_ll(bool alteration, unsigned long *map,
> +			   int start_entry, int nentries)
>  {
> -	unsigned long *p = map + BIT_WORD(start);
> -	const int size = start + nr;
> -	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
> -	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
> -
> -	while (nr - bits_to_clear >= 0) {
> -		if (clear_bits_ll(p, mask_to_clear))
> -			return nr;
> -		nr -= bits_to_clear;
> -		bits_to_clear = BITS_PER_LONG;
> -		mask_to_clear = ~0UL;
> -		p++;
> -	}
> -	if (nr) {
> -		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
> -		if (clear_bits_ll(p, mask_to_clear))
> -			return nr;
> +	unsigned long start_bit;
> +	unsigned long end_bit;
> +	unsigned long mask;
> +	unsigned long value;
> +	int nbits;
> +	int bits_to_write;
> +	int index;
> +	int (*action)(unsigned long *addr,
> +		      unsigned long mask, unsigned long value);
> +
> +	action = (alteration == SET_BITS) ? set_bits_ll : clear_bits_ll;
> +
> +	/*
> +	 * Prepare for writing the initial part of the allocation, from
> +	 * starting entry, to the end of the UL bitmap element which
> +	 * contains it. It might be larger than the actual allocation.
> +	 */
> +	start_bit = ENTRIES_TO_BITS(start_entry);
> +	end_bit = ENTRIES_TO_BITS(start_entry + nentries);
> +	nbits = ENTRIES_TO_BITS(nentries);
> +	bits_to_write = BITS_PER_LONG - start_bit % BITS_PER_LONG;
> +	mask = BITMAP_FIRST_WORD_MASK(start_bit);
> +	/* Mark the beginning of the allocation. */
> +	value = MASK | (1UL << (start_bit % BITS_PER_LONG));
> +	index = BITS_DIV_LONGS(start_bit);
> +
> +	/*
> +	 * Writes entries to the bitmap, as long as the reminder is
> +	 * positive or zero.
> +	 * Might be skipped if the entries to write do not reach the end
> +	 * of a bitmap UL unit.
> +	 */
> +	while (nbits >= bits_to_write) {
> +		if (action(map + index, mask, value & mask))
> +			return BITS_DIV_ENTRIES(nbits);
> +		nbits -= bits_to_write;
> +		bits_to_write = BITS_PER_LONG;
> +		mask = ~0UL;
> +		value = MASK;
> +		index++;
>  	}
> 
> +	/* Takes care of the ending part of the entries to mark. */
> +	if (nbits > 0) {
> +		mask ^= BITMAP_FIRST_WORD_MASK((end_bit) % BITS_PER_LONG);
> +		bits_to_write = nbits;
> +		if (action(map + index, mask, value & mask))
> +			return BITS_DIV_ENTRIES(nbits);
> +	}
>  	return 0;
>  }
> 
> +
>  /**
>   * gen_pool_create - create a new special memory pool
> - * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
> + * @min_alloc_order: log base 2 of number of bytes each bitmap entry represents
>   * @nid: node id of the node the pool structure should be allocated on, or -1
>   *
>   * Create a new special memory pool that can be used to manage special purpose
>   * memory not managed by the regular kmalloc/kfree interface.
> + *
> + * Return: pointer to the pool, if successful, NULL otherwise
>   */
>  struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
>  {
> @@ -177,16 +357,18 @@ EXPORT_SYMBOL(gen_pool_create);
>   *
>   * Add a new chunk of special memory to the specified pool.
>   *
> - * Returns 0 on success or a -ve errno on failure.
> + * Return: 0 on success or a -ve errno on failure.
>   */
>  int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
>  		 size_t size, int nid)
>  {
>  	struct gen_pool_chunk *chunk;
> -	int nbits = size >> pool->min_alloc_order;
> -	int nbytes = sizeof(struct gen_pool_chunk) +
> -				BITS_TO_LONGS(nbits) * sizeof(long);
> +	int nentries;
> +	int nbytes;
> 
> +	nentries = size >> pool->min_alloc_order;
> +	nbytes = sizeof(struct gen_pool_chunk) +
> +		 ENTRIES_DIV_LONGS(nentries) * sizeof(long);
>  	chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
>  	if (unlikely(chunk == NULL))
>  		return -ENOMEM;
> @@ -209,7 +391,7 @@ EXPORT_SYMBOL(gen_pool_add_virt);
>   * @pool: pool to allocate from
>   * @addr: starting address of memory
>   *
> - * Returns the physical address on success, or -1 on error.
> + * Return: the physical address on success, or -1 on error.
>   */
>  phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
>  {
> @@ -248,7 +430,7 @@ void gen_pool_destroy(struct gen_pool *pool)
>  		list_del(&chunk->next_chunk);
> 
>  		end_bit = chunk_size(chunk) >> order;
> -		bit = find_next_bit(chunk->bits, end_bit, 0);
> +		bit = find_next_bit(chunk->entries, end_bit, 0);
>  		BUG_ON(bit < end_bit);
> 
>  		kfree(chunk);
> @@ -267,6 +449,8 @@ EXPORT_SYMBOL(gen_pool_destroy);
>   * Uses the pool allocation function (with first-fit algorithm by default).
>   * Can not be used in NMI handler on architectures without
>   * NMI-safe cmpxchg implementation.
> + *
> + * Return: address of the memory allocated, otherwise NULL
>   */
>  unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
>  {
> @@ -285,6 +469,8 @@ EXPORT_SYMBOL(gen_pool_alloc);
>   * Uses the pool allocation function (with first-fit algorithm by default).
>   * Can not be used in NMI handler on architectures without
>   * NMI-safe cmpxchg implementation.
> + *
> + * Return: address of the memory allocated, otherwise NULL
>   */
>  unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size,
>  		genpool_algo_t algo, void *data)
> @@ -292,7 +478,7 @@ unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size,
>  	struct gen_pool_chunk *chunk;
>  	unsigned long addr = 0;
>  	int order = pool->min_alloc_order;
> -	int nbits, start_bit, end_bit, remain;
> +	int nentries, start_entry, end_entry, remain;
> 
>  #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
>  	BUG_ON(in_nmi());
> @@ -301,29 +487,32 @@ unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size,
>  	if (size == 0)
>  		return 0;
> 
> -	nbits = (size + (1UL << order) - 1) >> order;
> +	nentries = mem_to_units(size, order);
>  	rcu_read_lock();
>  	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
>  		if (size > atomic_long_read(&chunk->avail))
>  			continue;
> 
> -		start_bit = 0;
> -		end_bit = chunk_size(chunk) >> order;
> +		start_entry = 0;
> +		end_entry = chunk_size(chunk) >> order;
>  retry:
> -		start_bit = algo(chunk->bits, end_bit, start_bit,
> -				 nbits, data, pool);
> -		if (start_bit >= end_bit)
> +		start_entry = algo(chunk->entries, end_entry, start_entry,
> +				  nentries, data, pool);
> +		if (start_entry >= end_entry)
>  			continue;
> -		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
> +		remain = alter_bitmap_ll(SET_BITS, chunk->entries,
> +					 start_entry, nentries);
>  		if (remain) {
> -			remain = bitmap_clear_ll(chunk->bits, start_bit,
> -						 nbits - remain);
> -			BUG_ON(remain);
> +			remain = alter_bitmap_ll(CLEAR_BITS,
> +						 chunk->entries,
> +						 start_entry,
> +						 nentries - remain);
>  			goto retry;
>  		}
> 
> -		addr = chunk->start_addr + ((unsigned long)start_bit << order);
> -		size = nbits << order;
> +		addr = chunk->start_addr +
> +			((unsigned long)start_entry << order);
> +		size = nentries << order;
>  		atomic_long_sub(size, &chunk->avail);
>  		break;
>  	}
> @@ -342,6 +531,8 @@ EXPORT_SYMBOL(gen_pool_alloc_algo);
>   * Uses the pool allocation function (with first-fit algorithm by default).
>   * Can not be used in NMI handler on architectures without
>   * NMI-safe cmpxchg implementation.
> + *
> + * Return: address of the memory allocated, otherwise NULL
>   */
>  void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
>  {
> @@ -365,7 +556,7 @@ EXPORT_SYMBOL(gen_pool_dma_alloc);
>   * gen_pool_free - free allocated special memory back to the pool
>   * @pool: pool to free to
>   * @addr: starting address of memory to free back to pool
> - * @size: size in bytes of memory to free
> + * @size: size in bytes of memory to free or 0, for auto-detection
>   *
>   * Free previously allocated special memory back to the specified
>   * pool.  Can not be used in NMI handler on architectures without
> @@ -375,22 +566,29 @@ void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
>  {
>  	struct gen_pool_chunk *chunk;
>  	int order = pool->min_alloc_order;
> -	int start_bit, nbits, remain;
> +	int start_entry, remaining_entries, nentries, remain;
> +	int boundary;
> 
>  #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
>  	BUG_ON(in_nmi());
>  #endif
> 
> -	nbits = (size + (1UL << order) - 1) >> order;
>  	rcu_read_lock();
>  	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
>  		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
>  			BUG_ON(addr + size - 1 > chunk->end_addr);
> -			start_bit = (addr - chunk->start_addr) >> order;
> -			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
> +			start_entry = (addr - chunk->start_addr) >> order;
> +			remaining_entries = (chunk->end_addr - addr) >> order;
> +			boundary = get_boundary(chunk->entries, start_entry,
> +						remaining_entries);
> +			BUG_ON(boundary < 0);
> +			nentries = boundary - start_entry;
> +			BUG_ON(size &&
> +			       (nentries != mem_to_units(size, order)));
> +			remain = alter_bitmap_ll(CLEAR_BITS, chunk->entries,
> +						 start_entry, nentries);
>  			BUG_ON(remain);
> -			size = nbits << order;
> -			atomic_long_add(size, &chunk->avail);
> +			atomic_long_add(nentries << order, &chunk->avail);
>  			rcu_read_unlock();
>  			return;
>  		}
> @@ -428,8 +626,9 @@ EXPORT_SYMBOL(gen_pool_for_each_chunk);
>   * @start:	start address
>   * @size:	size of the region
>   *
> - * Check if the range of addresses falls within the specified pool. Returns
> - * true if the entire range is contained in the pool and false otherwise.
> + * Check if the range of addresses falls within the specified pool.
> + *
> + * Return: true if the entire range is contained in the pool, false otherwise.
>   */
>  bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
>  			size_t size)
> @@ -455,7 +654,7 @@ bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
>   * gen_pool_avail - get available free space of the pool
>   * @pool: pool to get available free space
>   *
> - * Return available free space of the specified pool.
> + * Return: available free space of the specified pool.
>   */
>  size_t gen_pool_avail(struct gen_pool *pool)
>  {
> @@ -474,7 +673,7 @@ EXPORT_SYMBOL_GPL(gen_pool_avail);
>   * gen_pool_size - get size in bytes of memory managed by the pool
>   * @pool: pool to get size
>   *
> - * Return size in bytes of memory managed by the pool.
> + * Return: size in bytes of memory managed by the pool.
>   */
>  size_t gen_pool_size(struct gen_pool *pool)
>  {
> @@ -517,17 +716,27 @@ EXPORT_SYMBOL(gen_pool_set_algo);
>   * gen_pool_first_fit - find the first available region
>   * of memory matching the size requirement (no alignment constraint)
>   * @map: The address to base the search on
> - * @size: The bitmap size in bits
> - * @start: The bitnumber to start searching at
> - * @nr: The number of zeroed bits we're looking for
> + * @size: The number of allocation units in the bitmap
> + * @start: The allocation unit to start searching at
> + * @nr: The number of allocation units we're looking for
>   * @data: additional data - unused
>   * @pool: pool to find the fit region memory from
> + *
> + * Return: index of the memory allocated, otherwise the end of the range
>   */
>  unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
>  		unsigned long start, unsigned int nr, void *data,
>  		struct gen_pool *pool)
>  {
> -	return bitmap_find_next_zero_area(map, size, start, nr, 0);
> +	unsigned long align_mask;
> +	unsigned long bit_index;
> +
> +	align_mask = roundup_pow_of_two(BITS_PER_ENTRY) - 1;
> +	bit_index = bitmap_find_next_zero_area(map, ENTRIES_TO_BITS(size),
> +					       ENTRIES_TO_BITS(start),
> +					       ENTRIES_TO_BITS(nr),
> +					       align_mask);
> +	return BITS_DIV_ENTRIES(bit_index);
>  }
>  EXPORT_SYMBOL(gen_pool_first_fit);
> 
> @@ -535,11 +744,13 @@ EXPORT_SYMBOL(gen_pool_first_fit);
>   * gen_pool_first_fit_align - find the first available region
>   * of memory matching the size requirement (alignment constraint)
>   * @map: The address to base the search on
> - * @size: The bitmap size in bits
> - * @start: The bitnumber to start searching at
> - * @nr: The number of zeroed bits we're looking for
> + * @size: The number of allocation units in the bitmap
> + * @start: The allocation unit to start searching at
> + * @nr: The number of allocation units we're looking for
>   * @data: data for alignment
>   * @pool: pool to get order from
> + *
> + * Return: index of the memory allocated, otherwise the end of the range
>   */
>  unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
>  		unsigned long start, unsigned int nr, void *data,
> @@ -547,23 +758,32 @@ unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
>  {
>  	struct genpool_data_align *alignment;
>  	unsigned long align_mask;
> +	unsigned long bit_index;
>  	int order;
> 
>  	alignment = data;
>  	order = pool->min_alloc_order;
> -	align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
> -	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
> +	align_mask = roundup_pow_of_two(
> +			ENTRIES_TO_BITS(mem_to_units(alignment->align,
> +						     order))) - 1;
> +	bit_index = bitmap_find_next_zero_area(map, ENTRIES_TO_BITS(size),
> +					       ENTRIES_TO_BITS(start),
> +					       ENTRIES_TO_BITS(nr),
> +					       align_mask);
> +	return BITS_DIV_ENTRIES(bit_index);
>  }
>  EXPORT_SYMBOL(gen_pool_first_fit_align);
> 
>  /**
>   * gen_pool_fixed_alloc - reserve a specific region
>   * @map: The address to base the search on
> - * @size: The bitmap size in bits
> - * @start: The bitnumber to start searching at
> - * @nr: The number of zeroed bits we're looking for
> + * @size: The number of allocation units in the bitmap
> + * @start: The allocation unit to start searching at
> + * @nr: The number of allocation units we're looking for
>   * @data: data for alignment
>   * @pool: pool to get order from
> + *
> + * Return: index of the memory allocated, otherwise the end of the range
>   */
>  unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
>  		unsigned long start, unsigned int nr, void *data,
> @@ -571,20 +791,23 @@ unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
>  {
>  	struct genpool_data_fixed *fixed_data;
>  	int order;
> -	unsigned long offset_bit;
> -	unsigned long start_bit;
> +	unsigned long offset;
> +	unsigned long align_mask;
> +	unsigned long bit_index;
> 
>  	fixed_data = data;
>  	order = pool->min_alloc_order;
> -	offset_bit = fixed_data->offset >> order;
>  	if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
>  		return size;
> +	offset = fixed_data->offset >> order;
> +	align_mask = roundup_pow_of_two(BITS_PER_ENTRY) - 1;
> +	bit_index = bitmap_find_next_zero_area(map, ENTRIES_TO_BITS(size),
> +					       ENTRIES_TO_BITS(start + offset),
> +					       ENTRIES_TO_BITS(nr), align_mask);
> +	if (bit_index != ENTRIES_TO_BITS(offset))
> +		return size;
> 
> -	start_bit = bitmap_find_next_zero_area(map, size,
> -			start + offset_bit, nr, 0);
> -	if (start_bit != offset_bit)
> -		start_bit = size;
> -	return start_bit;
> +	return BITS_DIV_ENTRIES(bit_index);
>  }
>  EXPORT_SYMBOL(gen_pool_fixed_alloc);
> 
> @@ -593,60 +816,84 @@ EXPORT_SYMBOL(gen_pool_fixed_alloc);
>   * of memory matching the size requirement. The region will be aligned
>   * to the order of the size specified.
>   * @map: The address to base the search on
> - * @size: The bitmap size in bits
> - * @start: The bitnumber to start searching at
> - * @nr: The number of zeroed bits we're looking for
> + * @size: The number of allocation units in the bitmap
> + * @start: The allocation unit to start searching at
> + * @nr: The number of allocation units we're looking for
>   * @data: additional data - unused
>   * @pool: pool to find the fit region memory from
> + *
> + * Return: index of the memory allocated, otherwise the end of the range
>   */
>  unsigned long gen_pool_first_fit_order_align(unsigned long *map,
>  		unsigned long size, unsigned long start,
>  		unsigned int nr, void *data, struct gen_pool *pool)
>  {
> -	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
> -
> -	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
> +	unsigned long align_mask;
> +	unsigned long bit_index;
> +
> +	align_mask = roundup_pow_of_two(ENTRIES_TO_BITS(nr)) - 1;
> +	bit_index = bitmap_find_next_zero_area(map, ENTRIES_TO_BITS(size),
> +					       ENTRIES_TO_BITS(start),
> +					       ENTRIES_TO_BITS(nr),
> +					       align_mask);
> +	return BITS_DIV_ENTRIES(bit_index);
>  }
>  EXPORT_SYMBOL(gen_pool_first_fit_order_align);
> 
>  /**
>   * gen_pool_best_fit - find the best fitting region of memory
> - * macthing the size requirement (no alignment constraint)
> + * matching the size requirement (no alignment constraint)
>   * @map: The address to base the search on
> - * @size: The bitmap size in bits
> - * @start: The bitnumber to start searching at
> - * @nr: The number of zeroed bits we're looking for
> + * @size: The number of allocation units in the bitmap
> + * @start: The allocation unit to start searching at
> + * @nr: The number of allocation units we're looking for
>   * @data: additional data - unused
>   * @pool: pool to find the fit region memory from
>   *
>   * Iterate over the bitmap to find the smallest free region
>   * which we can allocate the memory.
> + *
> + * Return: index of the memory allocated, otherwise the end of the range
>   */
>  unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
>  		unsigned long start, unsigned int nr, void *data,
>  		struct gen_pool *pool)
>  {
> -	unsigned long start_bit = size;
> +	unsigned long start_bit = ENTRIES_TO_BITS(size);
>  	unsigned long len = size + 1;
>  	unsigned long index;
> +	unsigned long align_mask;
> +	unsigned long bit_index;
> 
> -	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
> +	align_mask = roundup_pow_of_two(BITS_PER_ENTRY) - 1;
> +	bit_index = bitmap_find_next_zero_area(map, ENTRIES_TO_BITS(size),
> +					       ENTRIES_TO_BITS(start),
> +					       ENTRIES_TO_BITS(nr),
> +					       align_mask);
> +	index = BITS_DIV_ENTRIES(bit_index);
> 
>  	while (index < size) {
> -		int next_bit = find_next_bit(map, size, index + nr);
> -		if ((next_bit - index) < len) {
> -			len = next_bit - index;
> -			start_bit = index;
> +		int next_bit;
> +
> +		next_bit = find_next_bit(map, ENTRIES_TO_BITS(size),
> +					 ENTRIES_TO_BITS(index + nr));
> +		if ((BITS_DIV_ENTRIES(next_bit) - index) < len) {
> +			len = BITS_DIV_ENTRIES(next_bit) - index;
> +			start_bit = ENTRIES_TO_BITS(index);
>  			if (len == nr)
> -				return start_bit;
> +				return BITS_DIV_ENTRIES(start_bit);
>  		}
> -		index = bitmap_find_next_zero_area(map, size,
> -						   next_bit + 1, nr, 0);
> +		bit_index =
> +			bitmap_find_next_zero_area(map,
> +						   ENTRIES_TO_BITS(size),
> +						   next_bit + 1,
> +						   ENTRIES_TO_BITS(nr),
> +						   align_mask);
> +		index = BITS_DIV_ENTRIES(bit_index);
>  	}
> 
> -	return start_bit;
> +	return BITS_DIV_ENTRIES(start_bit);
>  }
> -EXPORT_SYMBOL(gen_pool_best_fit);
> 
>  static void devm_gen_pool_release(struct device *dev, void *res)
>  {
> @@ -672,7 +919,7 @@ static int devm_gen_pool_match(struct device *dev, void *res, void *data)
>   * @dev: device to retrieve the gen_pool from
>   * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
>   *
> - * Returns the gen_pool for the device if one is present, or NULL.
> + * Return: the gen_pool for the device if one is present, or NULL.
>   */
>  struct gen_pool *gen_pool_get(struct device *dev, const char *name)
>  {
> @@ -696,6 +943,8 @@ EXPORT_SYMBOL_GPL(gen_pool_get);
>   * Create a new special memory pool that can be used to manage special purpose
>   * memory not managed by the regular kmalloc/kfree interface. The pool will be
>   * automatically destroyed by the device management code.
> + *
> + * Return: the address of the pool, if successful, otherwise NULL
>   */
>  struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
>  				      int nid, const char *name)
> @@ -743,7 +992,7 @@ EXPORT_SYMBOL(devm_gen_pool_create);
>   * @propname: property name containing phandle(s)
>   * @index: index into the phandle array
>   *
> - * Returns the pool that contains the chunk starting at the physical
> + * Return: the pool that contains the chunk starting at the physical
>   * address of the device tree node pointed at by the phandle property,
>   * or NULL if not found.
>   */
> -- 
> 2.14.1
> 
> --
> To unsubscribe, send a message with 'unsubscribe linux-mm' in
> the body to majordomo@...ck.org.  For more info on Linux MM,
> see: http://www.linux-mm.org/ .
> Don't email: <a href=mailto:"dont@...ck.org"> email@...ck.org </a>
> 
> 

-- 
Sincerely yours,
Mike.

Powered by blists - more mailing lists

Confused about mailing lists and their use? Read about mailing lists on Wikipedia and check out these guidelines on proper formatting of your messages.