
Google Summer of Code

REPORT

Qualification Task
Katja Malvoni

Mentoring organization: Openwall

May 2013.



Task description

The task was implementation of the bcrypt hashing algorithm on the Epiphany chip.

My approach was to get to know the chip and understand bcrypt algorithm before

working on the task itself. To do that I went trough Epiphany Architecture Reference,

Epiphany SDK Reference and read the paper A Future-Adaptable Password Scheme

by Niels Provos and David Mazières. I decided to reuse existing Openwall bcrypt

implementation because of multiple reasons. Epiphany SDK supports C, there is pos-

sibility that implementing bcrypt from scratch would result with bugs and it is highly

unlikely that form scratch implementation could outperform existing one.

My first approach was to load whole bcrypt on a single Epiphany core. I started with

only one core because the idea is to have one bcrypt instance per core so all cores

will execute the same code. And I found it simpler to make it work on one core

only because I never used Epiphany before. The first problem I encountered was the

code size - the whole code couldn’t fit core internal memory. I first used legacy.ldf

instead of fast.ldf to have all the code in the external SDRAM. After that, I com-

piled code using compiler optimization options and the code could fit the internal

SRAM (fast.ldf used). After my posting to the john-dev mailing list, Alexander sug-

gested using size-optimized bcrypt implementation: http://git.musl-libc.

org/cgit/musl/tree/src/crypt/crypt_blowfish.c. This implemen-

tation fits the internal SDRAM without any compiler optimizations and it is used in

the attached code (e_bcrypt.c). It was tested with only one test vector and it produced

the correct result. I wanted to test it with more vectors, do self-test and to measure

performance but the system crashed and I wasn’t able to do the tests nor measure

the performance. I also wanted to test the performance of three different working

.elf files (legacy.ldf, compiler optimizations and size-optimized) and compare them. I

was mostly interested in performance difference between having code in the internal

SRAM versus code being placed in the external SDRAM.

Encountered problems

Except the problem with code size, I encountered problems related to the system itself.

When I first started working on the qualification task, one version of the eSDK was

installed. After I reported problems with compilation, Yaniv updated the system. What

happened to me is that I had been using outdated matrix multiplication example as my

reference and I lost some hours trying to use same library as in outdated example. The

1

http://git.musl-libc.org/cgit/musl/tree/src/crypt/crypt_blowfish.c
http://git.musl-libc.org/cgit/musl/tree/src/crypt/crypt_blowfish.c


library has a different name in the newest release and the functions I had been trying

to use also changed. The lesson which I learned from this problem is that I should ask

questions even though they sound basic and unimportant.

Future work

Future work is to run bcrypt on all the cores, not just a single core. Except, that,

Alexander suggested implementing only the most costly loop on the Epiphany. The

two implementations should be compared and the better one should be integrated into

John the Ripper.

2


	Task description
	Encountered problems
	Future work

